Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Glob Chang Biol ; 30(1): e16996, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916454

RESUMO

A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.


Assuntos
Bactérias , Ecossistema , Biodiversidade , Solo/química , Florestas , Microbiologia do Solo
2.
Glob Chang Biol ; 30(1): e17028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955302

RESUMO

Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Archaea , Solo/química , Água/metabolismo , Microbiologia do Solo
3.
Plant Cell Environ ; 46(11): 3542-3557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37564021

RESUMO

Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.

4.
Glob Chang Biol ; 28(22): 6653-6664, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002985

RESUMO

Agricultural ecosystems are facing increasing environmental changes. Revealing ecological stability of belowground organisms is key to developing management strategies that maintain agricultural ecosystem services in a changing world. Here, we collected soils from adjacent pairs of maize and rice fields along large spatial scale across Eastern and Southeast China to investigate the importance of core microbiota as a predictor of resistance of soil microbiome (e.g. bacteria, fungi and protist) to climate changes and nutrient fertilization, and their effect on multiple ecosystem functions, representing key services for crop growth and health in agro-ecosystems. Soil microbiome in maize soils exhibited stronger resistance than that in rice soils, by considering multiple aspects of the resistance index, for example, community, phylogenetic conservation and network complexity. Community resistance of soil microbiome showed a geographic pattern, with higher resistance at lower latitudes, suggesting their stronger resistance in warmer regions. Particularly, we highlighted the role of core phylotypes in enhancing the community resistance of soil microbiome, which was essential for the maintenance of multifunctionality in agricultural ecosystems. Our results represent a significant advance in linking core phylotypes to community resistance and ecosystem functions, and therefore forecasting agro-ecosystems dynamics in response to ongoing environmental changes. These suggest that core phylotypes should be considered a key factor in enhancing agricultural sustainability and crop productivity under global change scenarios.


Assuntos
Microbiota , Oryza , Agricultura , Ecossistema , Filogenia , Solo , Microbiologia do Solo , Zea mays
5.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566031

RESUMO

Proanthocyanidins (PACs) have been proven to possess a wide range of biological activities, but complex structures limit their study of structure-function relationships. Therefore, an efficient and general method using hydrophilic interaction high-performance liquid chromatography coupled with high-resolution quadrupole time-of-flight tandem mass spectrometry (HILIC-QTOF-MS) was established to analyze PACs from different plant materials. This method was successfully applied to characterize PACs from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves (BLPs), sorghum testa (STPs) and grape seeds (GSPs). BLPs with the degree of polymerization (DP) from 1 to 8 were separated. BLPs are mainly B-type prodelphinidins and A-type BLPs were first found in this study. STPs and GSPs belonging to procyanidins showed DP from 3 to 11 and 2 to 12, respectively. A-type linkages were found for every DP of STPs and GSPs, which were first found. These results showed that HILIC-QTOF-MS can be successfully applied for analyzing PACs from different plant materials, which is necessary for the prediction of their potential health benefits.


Assuntos
Proantocianidinas , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Folhas de Planta/química , Proantocianidinas/química , Espectrometria de Massas em Tandem
6.
Arch Microbiol ; 203(1): 325-333, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32940717

RESUMO

Gut microbiota plays vital roles in the development, evolution and environmental adaptation of the host insects. The brown planthopper (BPH) is one of the most destructive pests of rice, but little is known about its gut microbiota. In this study, we investigated the gut bacterial communities in two BPH populations feeding on susceptible and resistant rice varieties by high-throughput amplicon sequencing. Our results revealed that the gut bacterial communities in BPH were species diverse. A total of 29 phyla and 367 genera were captured, with Proteobacteria and Acinetobacter being the most prominent phylum and genus, respectively. Comparative analysis showed that significant differences in the profile of gut bacterial communities existed between the two BPH populations. The species richness detected in the population feeding on the resistant rice variety was significantly higher than that in the population rearing on the susceptible rice variety. Although the most dominant gut bacteria at all taxonomic levels showed no significant differences between the two BPH populations, the relative abundances of two subdominant phyla (Firmicutes and Bacteroidetes) and two subdominant classes (Bacteroidia and Clostridia) were significantly different. FAPROTAX analysis further indicated that host rice varieties might induce changes of the gut bacterial flora in BPH, as significant differences in five metabolism-related functional categories (fermentation, methylotrophy, xylanolysis, nitrate reduction and ureolysis) were detected between the two BPH populations. Our results are informative for studies which focused on the interactions between BPH and its symbiotic microbes and could also provide the basis of future BPH biological management.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Hemípteros/microbiologia , Interações Hospedeiro-Patógeno , Oryza/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/classificação , Oryza/microbiologia , Simbiose
7.
Analyst ; 147(1): 40-47, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34816839

RESUMO

Metal-organic frameworks (MOFs) have attracted extensive attention for the development of colorimetric detection methods due to their ease of modification and high density of active sites. However, most of the reported colorimetric sensors based on MOFs show only a single nanozyme activity. Herein, the bifunctional enzyme activities of a hexagonal prism Cu MOF with fumaric acid as the ligand (Cu FMA), namely laccase-like activity under alkaline conditions (pH = 8) and peroxidase-like activity under acidic conditions (pH = 4), were verified. The specificity of Cu FMA at different pH values may be due to the presence of the Cu+ active center introduced by the weak reducibility of FMA. At pH = 8, Cu+ active centers are beneficial for dissociating the H-O bonds of phenolic compounds for the laccase system. In contrast, the dissociation of H-O is weakened at pH = 4, which prompts the breaking of the O-O bonds of H2O2 as a Fenton-like reaction for the peroxidase system. Based on the dual enzyme activities, Cu FMA sensors exhibit outstanding detectability for epinephrine and glucose with linear ranges of 2.7-54.6 µM and 0.01-0.8 mM and detection limits of 1.1 µM and 2.28 × 10-7 M, respectively. The Cu FMA colorimetric sensor can be applied for detecting and measuring glucose and epinephrine in human serum samples. This work paves the way for Cu MOFs to be used as the basis for rational regulation of the activity of dual nanozymes and for multifunctional applications under completely independent conditions.


Assuntos
Colorimetria , Cobre , Epinefrina , Fumaratos , Glucose , Humanos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio
8.
Genomics ; 112(1): 769-773, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226482

RESUMO

B. longum LTBL16 is a potential probiotic strain that was isolated from healthy centenarians in Bama, China. In vitro experiments show that B. longum LTBL16 has a strong antioxidant activity and the complete genome of B. longum LTBL16 was sequenced in this work. The genome consists of one 2,430,682 bp circular chromosome that is plasmid free. The circular chromosome has a GC content of 61.23% and contains 2071 coding sequences (CDSs), 4 rRNA manipulators and 55 tRNA coding genes. Genetic analysis showed that at least five protein-coding genes were associated with antioxidant activity, and the abundance of these genes may be related to free radical scavenging rates and oxygen tolerance. In addition, the safety of B. longum LTBL16 was evaluated using a virulence factor database and antibiotic resistance gene database. The results indicate that B. longum LTBL16 has the good potential for the development and utilization as a probiotic.


Assuntos
Antioxidantes , Bifidobacterium longum/genética , Genoma Bacteriano , Idoso de 80 Anos ou mais , Bifidobacterium longum/classificação , Bifidobacterium longum/efeitos dos fármacos , Bifidobacterium longum/patogenicidade , Farmacorresistência Bacteriana/genética , Humanos , Filogenia , Probióticos , Análise de Sequência de DNA , Fatores de Virulência/genética
9.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301278

RESUMO

Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/farmacologia , Glutationa/metabolismo , Neoplasias Ovarianas/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Transportador de Cobre 1 , Adutos de DNA/metabolismo , Dano ao DNA , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/patologia , Regulação para Cima/efeitos dos fármacos
10.
Molecules ; 21(12)2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27941615

RESUMO

Obesity is one of the most common nutritional diseases worldwide. This disease causes health problems, such as dyslipidemia, hyperglycemia, hypertension and inflammation. There are drugs used to inhibit obesity. However, they have serious side effects outweighing their beneficial effects. Black tea, commonly referred to as "fermented tea", has shown a positive effect on reducing body weight in animal models. Black tea polyphenols are the major components in black tea which reduce body weight. Black tea polyphenols are more effective than green tea polyphenols. Black tea polyphenols exert a positive effect on inhibiting obesity involving in two major mechanisms: (i) inhibiting lipid and saccharide digestion, absorption and intake, thus reducing calorie intake; and (ii) promoting lipid metabolism by activating AMP-activated protein kinase to attenuate lipogenesis and enhance lipolysis, and decreasing lipid accumulation by inhibiting the differentiation and proliferation of preadipocytes; (iii) blocking the pathological processes of obesity and comorbidities of obesity by reducing oxidative stress. Epidemiological studies of the health relevance between anti-obesity and black tea polyphenols consumption remain to be further investigated.


Assuntos
Antioxidantes/farmacologia , Polifenóis/farmacologia , Chá/química , Redução de Peso/efeitos dos fármacos , Animais , Humanos
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(11): 3161-6, 2015 Nov.
Artigo em Zh | MEDLINE | ID: mdl-26978928

RESUMO

In this work, cadmium nitrate hexahydrate [Cd(NO3)2 · 6H2O] is as a source of cadmium, zinc nitrate [Zn(NO3)2] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH4). Then water-soluble Cd1₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd1₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd1₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd0.5 Zn0.5 Se@TNTs) of Cd0.5 Zn0.5 Se ternary quantum dots and TiO2 nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd0.5 Zn0.5 Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd0.5 Zn0.5 Se ternary quantum dots and TiO2 nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd0.5Zn0.5 Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd0.5 Zn0.5 Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd0.5 Zn0.5 Se ternary quantum dots, respectively.

12.
Food Chem ; 444: 138655, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330612

RESUMO

In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.


Assuntos
Catequina , Catequina/análogos & derivados , Curcumina , Nanopartículas , Curcumina/química , Simulação de Acoplamento Molecular , Bebidas , Catequina/química , Nanopartículas/química , Água
13.
Int J Biol Macromol ; 258(Pt 2): 128777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096935

RESUMO

Microcapsules were always used as functional material carriers for targeted delivery and meanwhile offering protection. However, microcapsule wall materials with specific properties were required, which makes the choice of wall material a key factor. In our previous study, a highly branched rhamnogalacturonan I rich (RG-I-rich) pectin was extracted from citrus canning processing water, which showed good gelling properties and binding ability, indicating it could be a potential microcapsule wall material. In the present study, Lactiplantibacillus plantarum GDMCC 1.140 and Lactobacillus rhamnosus were encapsulated by RG-I-rich pectin with embedding efficiencies of about 65 %. The environmental tolerance effect was evaluated under four different environmental stresses. Positive protection results were obtained under all four conditions, especially under H2O2 stress, the survival rate of probiotics embedded in microcapsules was about double that of free probiotics. The storage test showed that the total plate count of L. rhamnosus encapsulated in RG-I-rich pectin microcapsules could still reach 6.38 Log (CFU/mL) at 25 °C for 45 days. Moreover, probiotics embedded in microcapsules with additional incubation to form a biofilm layer inside could further improve the probiotics' activities significantly in the above experiments. In conclusion, RG-I-rich pectin may be a good microcapsule wall material for probiotics protection.


Assuntos
Peróxido de Hidrogênio , Probióticos , Cápsulas/química , Pectinas/química , Probióticos/química
14.
Nat Commun ; 15(1): 3624, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684659

RESUMO

Agriculture contributes to a decline in local species diversity and to above- and below-ground biotic homogenization. Here, we conduct a continental survey using 1185 soil samples and compare microbial communities from natural ecosystems (forest, grassland, and wetland) with converted agricultural land. We combine our continental survey results with a global meta-analysis of available sequencing data that cover more than 2400 samples across six continents. Our combined results demonstrate that land conversion to agricultural land results in taxonomic and functional homogenization of soil bacteria, mainly driven by the increase in the geographic ranges of taxa in croplands. We find that 20% of phylotypes are decreased and 23% are increased by land conversion, with croplands enriched in Chloroflexi, Gemmatimonadota, Planctomycetota, Myxcoccota and Latescibacterota. Although there is no significant difference in functional composition between natural ecosystems and agricultural land, functional genes involved in nitrogen fixation, phosphorus mineralization and transportation are depleted in cropland. Our results provide a global insight into the consequences of land-use change on soil microbial taxonomic and functional diversity.


Assuntos
Agricultura , Bactérias , Microbiota , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota/genética , Ecossistema , Biodiversidade , Solo/química , Filogenia , Florestas , Pradaria , Áreas Alagadas , Fixação de Nitrogênio
15.
Environ Int ; 183: 108429, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219540

RESUMO

An increasing number of anthropogenic pressures can have negative effects on biodiversity and ecosystem functioning. However, our understanding of how soil microbial communities and functions in response to multiple global change factors (GCFs) is still incomplete, particularly in less frequently disturbed subsoils. In this study, we examined the impact of different levels of GCFs (0-9) on soil functions and bacterial communities in both topsoils (0-20 cm) and subsoils (20-40 cm) of an agricultural ecosystem, and characterized the intrinsic factors influencing community resistance based on microbial life history strategy. Our experimental results showed a decline in soil multifunctionality, bacterial diversity, and community resistance as the number of GCFs increased, with a more drastic reduction in community resistance of subsoils. Specifically, we observed a significantly positive relationship between the oligotroph/copiotroph ratio and community resistance in subsoils, which was also verified by the negative correlation between 16S rRNA operon (rrn) copy number and community resistance. Structural equation modeling further revealed the direct effects of community resistance in promoting the ecosystem functioning, regardless of top- and subsoils. Therefore, these results suggested that subsoils may recruit more oligotrophic microbes to enhance their originally weaker community resistance under multiple GCFs, which was essential for maintaining sustainable agroecological functions and services. Overall, our study represents a significant advance in linking microbial life history strategy to the resistance of belowground microbial community and functionality.


Assuntos
Ecossistema , Microbiota , RNA Ribossômico 16S , Microbiologia do Solo , Biodiversidade , Solo/química , Bactérias
16.
Virol J ; 10: 109, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23566727

RESUMO

BACKGROUND: Canine distemper virus (CDV) infects a variety of carnivores, including wild and domestic Canidae. In this study, we sequenced and phylogenetic analyses of the hemagglutinin (H) genes from eight canine distemper virus (CDV) isolates obtained from seven raccoon dogs (Nyctereutes procyonoides) and a giant panda (Ailuropoda melanoleuca) in China. RESULTS: Phylogenetic analysis of the partial hemagglutinin gene sequences showed close clustering for geographic lineages, clearly distinct from vaccine strains and other wild-type foreign CDV strains, all the CDV strains were characterized as Asia-1 genotype and were highly similar to each other (91.5-99.8% nt and 94.4-99.8% aa). The giant panda and raccoon dogs all were 549Y on the HA protein in this study, irrespective of the host species. CONCLUSIONS: These findings enhance our knowledge of the genetic characteristics of Chinese CDV isolates, and may facilitate the development of effective strategies for monitoring and controlling CDV for wild canids and non-canids in China.


Assuntos
Vírus da Cinomose Canina/classificação , Vírus da Cinomose Canina/genética , Hemaglutininas Virais/genética , Filogeografia , Guaxinins/virologia , Ursidae/virologia , Animais , China , Análise por Conglomerados , Vírus da Cinomose Canina/isolamento & purificação , Variação Genética , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
17.
Food Funct ; 14(18): 8369-8382, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37606621

RESUMO

Rosa sterilis S. D. Shi is a new variety of R. roxburghii Tratt and its fruits are rich in bioactive components, but its effects and mechanisms against intestinal inflammation are currently unknown. In this study, the main components of the ethanol extract of R. sterilis S. D. Shi fruits (RSE) were identified and its anti-inflammatory efficacy in DSS-induced mice was evaluated. A total of nine compounds were identified, including 1-O-E-cinnamoyl-(6-arabinosylglucose), ellagic acid-O-rhamnoside, (epi) catechin, niga-ichigoside F1, etc. The results demonstrated that RSE ameliorated DSS-induced inflammation in mouse colon tissues by increasing mucin expression, reducing the production of TNF-α, IL-1ß, and IL-6, inhibiting the mRNA expression of COX-2 and iNOS, regulating the composition of gut microbiota through suppressing Escherichia-Shigella while increasing Akkermansia muciniphila, and promoting the production of SCFAs, especially acetic acid. Briefly, RSE showed outstanding potential for anti-inflammatory activity and is expected to be a promising dietary supplement for healthy individuals to prevent or relieve colitis and colitis-related diseases, which provided a new direction for functional food development.


Assuntos
Catequina , Colite , Rosa , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação , Ácido Acético
18.
Foods ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36981246

RESUMO

Acid-catalyzed depolymerization is recognized as the most practical method for analyzing subunit composition and the polymerization degree of proanthocyanidins, involving purification by removing free flavan-3-ols, as well as acid-catalyzed cleavage and the identification of cleavage products. However, after the removal of proanthocyanidins with low molecular weights during purification, the formation of anthocyanidins from the extension subunits accompanying acid-catalyzed cleavage occurred. Thus, grape seed extract other than purified proanthocyanidins was applied to acid-catalyzed depolymerization. Hydrophilic interaction chromatography was developed to quantify free flavan-3-ols in grape seed extract to distinguish them from flavan-3-ols from terminal subunits of proanthocyanidins. Reverse-phase chromatography was used to analyze anthocyanidins and cleavage products at 550 and 280 nm, respectively. It is found that the defects of the recognized method did not influence the results of the subunit composition, but both altered the mean degree of polymerization. The established method was able to directly analyze proanthocyanidins in grape seed extract for higher accuracy and speed than the recognized method.

19.
Int J Biol Macromol ; 253(Pt 6): 126454, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37619688

RESUMO

In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.


Assuntos
Hidrogéis , Doenças Inflamatórias Intestinais , Humanos , Hidrogéis/química , Óxido Nítrico , Alginatos/química , Inflamação
20.
Food Chem ; 427: 136644, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390737

RESUMO

Bayberry juice is favored for its unique taste and flavor, while heat sterilization tends to reduce the aroma quality during processing, which limits its acceptability to consumers. To address this issue, we use exogenous polyphenols to regulate flavor compounds to improve the product quality. Total 13 differential key aroma-active compounds were identified between fresh bayberry juice (FBJ) and heat-sterilized bayberry juice (HBJ) using aroma extract dilution analysis (AEDA), orthogonal partial least squares-discriminant analysis (OPLS-DA) and odor activity values (OAVs). Further, eight polyphenols were added to investigate their influences on the aroma quality of HBJ respectively. The results showed that all tested polyphenols could maintain the aroma profile of HBJ closer to FBJ and improve the odor preference of HBJ, among which resveratrol and daidzein were most effective. Their aroma molecular regulatory mechanism involved enhancing the characteristic aroma of bayberry and reducing the certain off-flavored compounds produced by heat sterilization.


Assuntos
Myrica , Compostos Orgânicos Voláteis , Odorantes/análise , Temperatura Alta , Polifenóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Esterilização , Olfatometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA