Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446925

RESUMO

Epigallocatechin gallate (EGCG) and kaempferol exhibit cellular antioxidant activity; however, their interactive effects in terms of antioxidant actions and underlying mechanisms remain unclear. In this study, their cytoprotective effects were examined against 2,2-azobis (2-amidinopropane) dihydrochloride solution (ABAP)-induced oxidative stress in HepG2 cells. The results showed that the median effective dose (EC50) of the EGCG and kaempferol (6:1.5, c/c) combination was 3.4 ± 0.1 µg/mL, with a combination index (CIavg) value of 0.54, which represented a significant synergistic effect. Further experiments proved that the combined pretreatment with EGCG and kaempferol exerted protective effects by suppressing reactive oxygen species (ROS) generation, upregulating cellular antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)) in a dose-dependent manner. The mechanism of synergistic antioxidant effects of EGCG combined with kaempferol may be due to the up-regulation of higher antioxidant enzyme activities that improve the antioxidant capacities and balance the cell oxidative stress. The synergistic antioxidant effect of EGCG and kaempferol can provide a theoretical basis for the development of formulas of functional food ingredients.


Assuntos
Antioxidantes , Catequina , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Quempferóis/farmacologia , Estresse Oxidativo , Catequina/farmacologia , Espécies Reativas de Oxigênio/farmacologia
2.
J Am Chem Soc ; 143(9): 3583-3594, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33630576

RESUMO

The size, size distribution, dynamics, and electrostatic properties of free volume elements (FVEs) in polystyrene (PS) and poly(methyl methacrylate) (PMMA) were investigated using the Restricted Orientation Anisotropy Method (ROAM), an ultrafast infrared spectroscopic technique. The restricted orientational dynamics of a vibrational probe embedded in the polymer matrix provides detailed information on FVE sizes and their probability distribution. The probe's orientational dynamics vary as a function of its frequency within the inhomogeneously broadened vibrational absorption spectrum. By characterizing the degree of orientational restriction at different probe frequencies, FVE radii and their probability distribution were determined. PS has larger FVEs and a broader FVE size distribution than PMMA. The average FVE radii in PS and PMMA are 3.4 and 3.0 Å, respectively. The FVE radius probability distribution shows that the PS distribution is non-Gaussian, with a tail to larger radii, whereas in PMMA, the distribution is closer to Gaussian. FVE structural dynamics, previously unavailable through other techniques, occur on a ∼150 ps time scale in both polymers. The dynamics involve FVE shape fluctuations which, on average, conserve the FVE size. FVE radii were associated with corresponding electric field strengths through the first-order vibrational Stark effect of the CN stretch of the vibrational probe, phenyl selenocyanate (PhSeCN). PMMA displayed unique measured FVE radii for each electric field strength. By contrast, PS showed that, while larger radii correspond to unique and relatively weak electric fields, the smallest measured radii map onto a broad distribution of strong electric fields.

3.
J Chem Phys ; 154(24): 244104, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241361

RESUMO

The theoretical framework for reorientation-induced spectral diffusion (RISD) describes the polarization dependence of spectral diffusion dynamics as measured with two-dimensional (2D) correlation spectroscopy and related techniques. Generally, RISD relates to the orientational dynamics of the molecular chromophore relative to local electric fields of the medium. The predictions of RISD have been shown to be very sensitive to both restricted orientational dynamics (generally arising from steric hindrance) and the distribution of local electric fields relative to the probe (electrostatic ordering). Here, a theory that combines the two effects is developed analytically and supported with numerical calculations. The combined effects can smoothly vary the polarization dependence of spectral diffusion from the purely steric case (least polarization dependence) to the purely electrostatic case (greatest polarization dependence). Analytic approximations of the modified RISD equations were also developed using the orientational dynamics of the molecular probe and two order parameters describing the degree of electrostatic ordering. It was found that frequency-dependent orientational dynamics are a possible consequence of the combined electrostatic and steric effects, providing a test for the applicability of this model to experimental systems. The modified RISD equations were then used to successfully describe the anomalous polarization-dependent spectral diffusion seen in 2D infrared spectroscopy in a polystyrene oligomer system that exhibits frequency-dependent orientational dynamics. The degree of polarization-dependent spectral diffusion enables the extent of electrostatic ordering in a chemical system to be quantified and distinguished from steric ordering.

4.
Proc Natl Acad Sci U S A ; 115(45): E10586-E10595, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341220

RESUMO

We have developed Differential Specificity and Energy Landscape (DiSEL) analysis to comprehensively compare DNA-protein interactomes (DPIs) obtained by high-throughput experimental platforms and cutting edge computational methods. While high-affinity DNA binding sites are identified by most methods, DiSEL uncovered nuanced sequence preferences displayed by homologous transcription factors. Pairwise analysis of 726 DPIs uncovered homolog-specific differences at moderate- to low-affinity binding sites (submaximal sites). DiSEL analysis of variants of 41 transcription factors revealed that many disease-causing mutations result in allele-specific changes in binding site preferences. We focused on a set of highly homologous factors that have different biological roles but "read" DNA using identical amino acid side chains. Rather than direct readout, our results indicate that DNA noncontacting side chains allosterically contribute to sculpt distinct sequence preferences among closely related members of transcription factor families.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Técnica de Seleção de Aptâmeros , Termodinâmica
5.
J Chem Phys ; 153(20): 204201, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261482

RESUMO

The infrared pulses used to generate nonlinear signals from a vibrational probe can cause heating via solvent absorption. Solvent absorption followed by rapid vibrational relaxation produces unwanted heat signals by creating spectral shifts of the solvent and probe absorptions. The signals are often isolated by "chopping," i.e., alternately blocking one of the incident pulses. This method is standard in pump-probe transient absorption experiments. As less heat is deposited into the sample when an incident pulse is blocked, the heat-induced spectral shifts give rise to artificial signals. Here, we demonstrate a new method that eliminates heat induced signals using pulse shaping to control pulse spectra. This method is useful if the absorption spectrum of the vibrational probe is narrow compared to the laser bandwidth. By using a pulse shaper to selectively eliminate only frequencies of light resonant with the probe absorption during the "off" shot, part of the pulse energy, and the resulting heat, is delivered to the solvent without generating the nonlinear signal. This partial heating reduces the difference heat signal between the on and off shots. The remaining solvent heat signal can be eliminated by reducing the wings of the on shot spectrum while still resonantly exciting the probe; the heat deposition from the on shot can be matched with that from the off shot, eliminating the solvent heat contribution to the signal. Modification of the pulse sequence makes it possible to measure only the heat signal, permitting the kinetics of heating to be studied.

6.
Biophys J ; 117(2): 388-398, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301804

RESUMO

The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.


Assuntos
Glicerol/análogos & derivados , Glicerol/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Superfamília Shaker de Canais de Potássio/química , Sequência de Aminoácidos , Domínios Proteicos , Estrutura Secundária de Proteína
7.
J Phys Chem B ; 128(1): 280-286, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150550

RESUMO

Measurement of molecular orientation relaxation using ultrafast infrared (IR) pump-probe experiments is widely used to understand the properties of liquids and other systems. In the simplest situation, the anisotropy decay is a single exponential reflecting diffusive orientational relaxation. However, the anisotropy decay is frequently biexponential. The faster component is caused by solvent caging restricting angular sampling until constraint release permits all angles to be sampled. Here, we describe another mechanism that limits the range of sampling, i.e., sampling of a restricted range of angles via internal bond reorientation on a rotational potential surface with barriers. If the internal angular sampling occurs faster than the entire molecule's diffusive orientational relaxation, it will produce a fast component of anisotropy decay with a cone angle determined by the shape of the internal rotation potential. We studied four molecules to illustrate the effects of internal bond rotations on anisotropy decay. The molecules are p-chlorobenzonitrile, phenylselenocyanate, phenylthiocyanate, and 2-nitrophenylselenocyante in the solvent N,N-dimethylformamide. The CN stretch is used as the IR chromophore. p-Chlorobenzonitrile does not have internal rotation; its anisotropy decays as a single exponential. The other three have bent geometries and internal rotation of the moieties containing the CN occurs; the anisotropies decay as biexponentials. The faster of the two decays can be understood in terms of motions on the rotational potential surface. A method is developed for extracting the intramolecular rotational potential surface by employing a modification of the harmonic cone model, and the results are compared to density functional theory calculations.

8.
Adv Mater ; : e2402133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767177

RESUMO

High-temperature flexible polymer dielectrics are critical for high density energy storage and conversion. The need to simultaneously possess a high bandgap, dielectric constant and glass transition temperature forms a substantial design challenge for novel dielectric polymers. Here, by varying halogen substituents of an aromatic pendant hanging off a bicyclic mainchain polymer, a class of high-temperature olefins with adjustable thermal stability are obtained, all with uncompromised large bandgaps. Halogens substitution of the pendant groups at para or ortho position of polyoxanorborneneimides (PONB) imparts it with tunable high glass transition from 220 to 245 °C, while with high breakdown strength of 625-800 MV/m. A high energy density of 7.1 J/cc at 200 °C is achieved with p-POClNB, representing the highest energy density reported among homo-polymers. Molecular dynamic simulations and ultrafast infrared spectroscopy are used to probe the free volume element distribution and chain relaxations pertinent to dielectric thermal properties. An increase in free volume element is observed with the change in the pendant group from fluorine to bromine at the para position; however, smaller free volume element is observed for the same pendant when at the ortho position due to steric hindrance. With the dielectric constant and bandgap remaining stable, properly designing the pendant groups of PONB boosts its thermal stability for high density electrification.

9.
J Phys Chem B ; 127(3): 717-731, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36629314

RESUMO

A vibration's transition frequency is partly determined by the first-order Stark effect, which accounts for the electric field experienced by the mode. Using ultrafast infrared pump-probe and FT-IR spectroscopies, we characterized both the 0 → 1 and 1 → 2 vibrational transitions' field-dependent peak positions and line widths of the CN stretching mode of benzonitrile (BZN) and phenyl selenocyanate (PhSeCN) in ten solvents. We present a theoretical model that decomposes the observed line width into a field-dependent Stark contribution and a field-independent non-Stark solvent coupling contribution (NSC). The model demonstrates that the field-dependent peak position is independent of the line width, even when the NSC dominates the latter. Experiments show that when the Stark tuning rate is large compared to the NSC (PhSeCN), the line width has a field dependence, albeit with major NSC-induced excursions from linearity. When the Stark tuning rate is small relative to the NSC (BZN), the line width is field-independent. BZN's line widths are substantially larger for the 1 → 2 transition, indicating a 1 → 2 transition enhancement of the NSC. Additionally, we examine, theoretically and experimentally, the difference in the 0 → 1 and 1 → 2 transitions' Stark tuning rates. Second-order perturbation theory combined with density functional theory explain the difference and show that the 1 → 2 transition's Stark tuning rate is ∼10% larger. The Stark tuning rate of PhSeCN is larger than BZN's for both transitions, consistent with the theoretical calculations. This study provides new insights into vibrational line shape components and a more general understanding of the vibrational response to external electric fields.

10.
Front Nutr ; 9: 892426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634373

RESUMO

With the aim to establish a structure-inhibitory activity relationship of flavonoids against dipeptidyl peptidase-4 (DPP-4) and elucidate the interaction mechanisms between them, a pannel of 70 structurally diverse flavonoids was used to evaluate their inhibitory activities against DPP-4, among which myricetin, hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin showed higher inhibitory activities in a concentration-dependent manner. Structure-activity relationship analysis revealed that introducing hydroxyl groups to C3', C4', and C6 of the flavonoid structure was beneficial to improving the inhibitory efficacy against DPP-4, whereas the hydroxylation at position 3 of ring C in the flavonoid structure was unfavorable for the inhibition. Besides, the methylation of the hydroxyl groups at C3', C4', and C7 of the flavonoid structure tended to lower the inhibitory activity against DPP-4, and the 2,3-double bond and 4-carbonyl group on ring C of the flavonoid structure was essential for the inhibition. Glycosylation affected the inhibitory activity diversely, depending on the structure of flavonoid aglycone, type of glycoside, as well as the position of substitution. Inhibition kinetic analysis suggested that myricetin reversibly inhibited DPP-4 in a non-competitive mode, whereas hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin all reversibly inhibited DPP-4 in a mixed type. Moreover, the fluorescence quenching analysis indicated that all the five flavonoid compounds could effectively quench the intrinsic fluorescence of DPP-4 by spontaneously binding with it to form an unstable complex. Hydrogen bonds and van der Waals were the predominant forces to maintain the complex of myricetin with DPP-4, and electrostatic forces might play an important role in stabilizing the complexes of the remaining four flavonoids with DPP-4. The binding of the tested flavonoids to DPP-4 could also induce the conformation change of DPP-4 and thus led to inhibition on the enzyme. Molecular docking simulation further ascertained the binding interactions between DPP-4 and the selected five flavonoids, among which hyperoside, narcissoside, cyaniding 3-O-glucoside, and isoliquiritigenin inserted into the active site cavity of DPP-4 and interacted with the key amino acid residues of the active site, whereas the binding site of myricetin was located in a minor cavity close to the active pockets of DPP-4.

11.
J Phys Chem B ; 125(31): 8907-8918, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339200

RESUMO

Ultrafast infrared vibrational spectroscopy is widely used for the investigation of dynamics in systems from water to model membranes. Because the experimental observation window is limited to a few times the probe's vibrational lifetime, a frequent obstacle for the measurement of a broad time range is short molecular vibrational lifetimes (typically a few to tens of picoseconds). Five new long-lifetime aromatic selenocyanate vibrational probes have been synthesized and their vibrational properties characterized. These probes are compared to commercial phenyl selenocyanate. The vibrational lifetimes range between ∼400 and 500 ps in complex solvents, which are some of the longest room-temperature vibrational lifetimes reported to date. In contrast to vibrations that are long-lived in simple solvents such as CCl4, but become much shorter in complex solvents, the probes discussed here have ∼400 ps lifetimes in complex solvents and even longer in simple solvents. One of them has a remarkable lifetime of 1235 ps in CCl4. These probes have a range of molecular sizes and geometries that can make them useful for placement into different complex materials due to steric reasons, and some of them have functionalities that enable their synthetic incorporation into larger molecules, such as industrial polymers. We investigated the effect of a range of electron-donating and electron-withdrawing para-substituents on the vibrational properties of the CN stretch. The probes have a solvent-independent linear relationship to the Hammett substituent parameter when evaluated with respect to the CN vibrational frequency and the ipso 13C NMR chemical shift.


Assuntos
Compostos de Selênio , Vibração , Cianatos , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA