RESUMO
Rationale: Sini decoction (SND) is an efficient formula against DOX-induced cardiomyopathy (DCM), but the active ingredient combination (AIC) and mechanisms of SND remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on DCM. Methods: The AIC were screened by a novel comprehensive two-dimensional cardiac mitochondrial membrane chromatography (CMMC)-TOFMS analysis system and further validated by cell viability, reactive oxygen species (ROS) generation, ATP level, and mitochondrial membrane potential in DOX-induced H9c2 cell injury model. Then, an integrated model of cardiac mitochondrial metabolomics and proteomics were applied to clarify the underlying mechanism in vitro. Results: The CMMC column lifespan was significantly improved to more than 10 days. Songorine (S), neoline, talatizamine, 8-gingerol (G) and isoliquiritigenin (I), exhibiting stronger retention on the first-dimension CMMC column, were screened to have protective effects against DOX cardiotoxicity in the H9c2 cell model. S, G and I were selected as an AIC from SND according to the bioactivity evaluation and the compatibility theory of SND. The combined in vitro use of S, G and I produced more profound therapeutic effects than any component used individually on increasing ATP levels and mitochondrial membrane potential and suppressing intracellular ROS production. Moreover, SGI attenuated DCM might via regulating mitochondrial energy metabolism and mitochondrial dysfunction. Conclusions: The provided scientific evidence to support that SGI combination from SND could be used as a prebiotic agent for DCM. Importantly, the proposed two-dimensional CMMC-TOFMS analytical system provides a high-throughput screening strategy for mitochondria-targeted compounds from natural products, which could be applied to other subcellular organelle models for drug discovery.
Assuntos
Cardiomiopatias , Doxorrubicina , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doxorrubicina/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Miócitos Cardíacos/metabolismoRESUMO
Crystal-induced kidney injury (CIKI) is the fundamental pathological change during nephrolithiasis, although the molecular mechanism is still unclear. Pyrrosia calvata (Bak.) Ching has been used in folk medicine to treat urolithiasis for years. To clarify the pharmacodynamic substances and the mechanism of its antiurolithiasis effects, in this study, a novel, stop-flow, comprehensive, two-dimensional (2D) HK-2 and HK-2/CIKI cell membrane chromatography (CMC) comparative analysis system was developed to screen for the potential active ingredients from Pyrrosia calvata (Bak.) Ching against CIKI. The comprehensive 2D CMC comparative analysis system showed satisfactory selectivity, and eight ingredients were screened and identified by this system. Among them, mangiferin exhibited higher affinity for the HK-2/CIKI CMC column than the HK-2 CMC column and was selected for further efficacy verification. Cell proliferation assays showed that mangiferin could protect HK-2 cell viability after stimulation with sodium oxalate (NaOX). Additionally, in a rodent model of CIKI, mangiferin decreased the deposition of calcium oxalate (CaOX) crystals in mouse kidneys, alleviated the pathological damage to kidney tissue, and inhibited the upregulation of OPN, MCP1, and CD44 expression caused by CaOX crystals. The established comprehensive 2D CMC comparative analysis system can be applied to screen active ingredients with disease specificity from traditional Chinese medicine (TCM) and is suitable for other cell models.
Assuntos
Oxalato de Cálcio , Rim , Animais , Membrana Celular , Sobrevivência Celular , Cromatografia , CamundongosRESUMO
Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus, the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.