Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105032, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437887

RESUMO

Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia , Poli ADP Ribosilação , Tolerância a Radiação
2.
Cell Biol Int ; 43(4): 402-408, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614606

RESUMO

Aberrant Wnt/ß-catenin signaling is a characteristic feature of colorectal cancer (CRC), therefore, understanding the underlying mechanisms of aberrant Wnt/ß-catenin signaling will improve the treatment outcome of CRC. Expression of MNX1 in paired fresh CRC tissues and corresponding adjacent normal tissues were examined by qPCR and Western blotting. The levels of MNX1 in paraffin-embedded CRC specimens were detected by immunohistochemistry (IHC). The role of MNX1 in growth and proliferation of CRC cells was evaluated by MTT and colony formation assay. Luciferase reporter analysis and western blotting were carried out to explore the influence of MNX1 on Wnt/ß-catenin signaling. The results showed that expression of MNX1 is markedly upregulated in CRC tissues and positively correlated with level of Ki67, and overexpression of MNX1 significantly promotes the proliferation of CRC cells. Further study showed that ectopic expression of MNX1 activates the Wnt/ß-catenin signaling and upregulates the expression of c-Myc and CCND1, the downstream genes of Wnt/ß-catenin signaling. Therefore, MNX1 plays an indispensable role in promoting of human CRC progression and may represent a novel therapeutic target for CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Células HT29 , Proteínas de Homeodomínio/biossíntese , Humanos , Masculino , MicroRNAs/metabolismo , Estadiamento de Neoplasias , Interferência de RNA , Fatores de Transcrição/biossíntese , Regulação para Cima , beta Catenina/biossíntese , beta Catenina/genética , beta Catenina/metabolismo
4.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38349334

RESUMO

The cell cycle is a highly regulated process in which proteins involved in cell cycle progression exhibit periodic expression patterns, controlled by specific mechanisms such as transcription, translation, and degradation. However, the precise mechanisms underlying the oscillations of mRNA levels in cell cycle regulators are not fully understood. In this study, we observed that the stability of cyclin D1 (CCND1) mRNA fluctuates during the cell cycle, with increased stability during interphase and decreased stability during the M phase. Additionally, we identified a key RNA binding protein, positive coactivator 4 (PC4), which plays a crucial role in stabilizing CCND1 mRNA and regulating its periodic expression. Moreover, the binding affinity of PC4 to CCND1 mRNA is modulated by two cell cycle-specific posttranslational modifications: ubiquitination of K68 enhances binding and stabilizes the CCND1 transcript during interphase, while phosphorylation of S17 inhibits binding during the M phase, leading to degradation of CCND1 mRNA. Remarkably, PC4 promotes the transition from G1 to S phase in the cell cycle, and depletion of PC4 enhances the efficacy of CDK4/6 inhibitors in hepatocellular carcinoma, suggesting that PC4 could serve as a potential therapeutic target. These findings provide valuable insights into the intricate regulation of cell cycle dynamics.


Assuntos
Ciclo Celular , Ciclina D1 , Estabilidade de RNA , Proteínas de Ligação a RNA , Ciclo Celular/genética , Divisão Celular , Ciclina D1/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina , Estabilidade de RNA/genética , RNA Mensageiro/genética , Masculino , Animais , Camundongos , Camundongos Endogâmicos BALB C , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Fosforilação , Ubiquitinação
5.
J Exp Clin Cancer Res ; 38(1): 167, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995931

RESUMO

BACKGROUND: Xenotropic and polytropic retrovirus receptor 1 (XPR1), a previously identified cellular receptor for several murine leukemia viruses, plays a role in many pathophysiological processes. However, the role of XPR1 in human cancers has not yet been characterized. METHODS: Real-time PCR and western blotting assay were used to measure the expression of XPR1 in tongue squamous cell carcinoma (TSCC) tissues. Expression of XPR1 and p65 in clinical specimens was analyzed using immunohistochemical assay. The function of XPR1 on progression of TSCC was explored using in vitro and in vivo experiments. The molecular mechanism by which XPR1 helps to cancer progression was investigated by luciferase reporter activity, ELISA, PKA activity assay, immunofluorescence, western blotting and qPCR assay. RESULTS: Herein, we find that XPR1 is markedly upregulated in TSCC tissues compared to normal tongue tissues. High expression of XPR1 significantly correlates with the malignant features and poor patient survival in TSCC. Ectopic expression of XPR1 increases, while silencing of XPR1 reduces the proliferation, invasion and anti-apoptosis capacities of TSCC cells. Importantly, silencing of XPR1 effectively inhibits the tumorigenecity of TSCC cells. Moreover, we identified that XPR1 increased the concentration of intracellular cAMP and activated PKA. Thus, XPR1 promoted phosphorylation and activation of NF-κB signaling, which is required for XPR1-mediated oncogenic roles and significantly correlates with XPR1 expression in clinical specimens. CONCLUSIONS: These findings uncover a critical role of XPR1 in TSCC progression via activation of NF-κB, and suggest that XPR1 might be a potential prognostic marker or therapeutic target.


Assuntos
NF-kappa B/genética , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias da Língua/genética , Fator de Transcrição RelA/genética , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor do Retrovírus Politrópico e Xenotrópico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA