Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 300(8): 107530, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971310

RESUMO

Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.

2.
J Eukaryot Microbiol ; 64(2): 278-281, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27397809

RESUMO

The microsporidia Nosema bombycis is the insect pathogen of pebrine disease severely destructive to sericulture production. Here, we describe the use of Escherichia coli HT115 strain (DE3) to express double-strand RNAs targeting the gene encoding ADP/ATP protein in N. bombycis. The results showed that dsRNAs deferentially suppressed the gene expression during N. bombycis infection in the silkworm, and the effect waned gradually. Our results, for the first time, provide a tool to utilize the dsRNA expressed by recombinant E. coli to control the pebrine disease of the domestic silkworm.


Assuntos
Escherichia coli/genética , Regulação da Expressão Gênica , Nosema/genética , Doenças dos Animais/microbiologia , Doenças dos Animais/prevenção & controle , Animais , Bombyx/microbiologia , Proteínas de Transporte/genética , DNA Fúngico/genética , Regulação para Baixo , Proteínas Fúngicas/genética , Microsporidiose/microbiologia , Microsporidiose/prevenção & controle , Microsporidiose/veterinária , Nosema/patogenicidade , Interferência de RNA , RNA de Cadeia Dupla/genética , Proteínas Recombinantes , Esporos
3.
Exp Neurol ; 377: 114805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729552

RESUMO

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas de Ligação a RNA , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Fosforilação , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Células Cultivadas , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética
4.
Adv Sci (Weinh) ; 11(11): e2305260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183387

RESUMO

It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.


Assuntos
Doença de Alzheimer , Glicina Hidroximetiltransferase , Animais , Camundongos , Regiões 5' não Traduzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Glicina Hidroximetiltransferase/genética , RNA Mensageiro/genética
5.
Transl Stroke Res ; 14(4): 530-544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749033

RESUMO

Delayed cerebral ischemia (DCI) is the most severe complication after subarachnoid hemorrhage (SAH), and cortical spreading depolarization (CSD) is believed to play a vital role in it. However, the dynamic changes in cerebral blood flow (CBF) in response to CSD in typical SAH models have not been well investigated. Here, SAH was established in mice with endovascular perforation. Subsequently, the spontaneous CBF dropped instantly and then returned to baseline rapidly. After KCl application to the cortex, subsequent hypoperfusion waves occurred across the groups, while a lower average perfusion level was found in the SAH groups (days 1-7). Moreover, in the SAH groups, the number of CSD decreased within day 7, and the duration and spreading velocity of the CSD increased within day 3 and day 14, respectively. Next, we continuously monitored the local field potential (LFP) in the prefrontal cortex. The results showed that the decrease in the percentage of gamma oscillations lasted throughout the whole process in the SAH group. In the chronic phase after SAH, we found that the mice still had cognitive deficits but experienced no obvious tissue damage. In summary, SAH negatively affects the CBF responses to CSD and the spontaneous LFP activity and causes long-term cognitive deficits in mice. Based on these findings, in the specific phase after SAH, DCI is induced or exacerbated more easily by potential causers of CSD in clinical practice (edema, erythrocytolysis, inflammation), which may lead to neurological deterioration.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Camundongos , Animais , Isquemia Encefálica/complicações , Infarto Cerebral/complicações , Circulação Cerebrovascular
6.
J Alzheimers Dis ; 91(1): 407-426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36442191

RESUMO

BACKGROUND: Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-ß protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE: The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS: The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS: HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or ß-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION: HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Corpos Cetônicos , Sirolimo/farmacologia , Autofagia/fisiologia , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo
7.
Fluids Barriers CNS ; 19(1): 57, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820896

RESUMO

BACKGROUND: Traumatic brain injury (TBI) provokes secondary pathological damage, such as damage to the blood-brain barrier (BBB), ischaemia and inflammation. Major facilitator superfamily domain-containing 2a (Mfsd2a) has been demonstrated to be critical in limiting the increase in BBB vesicle transcytosis following brain injury. Recent studies suggest that a novel and selective modulator of the sphingosine-1-phosphate receptor 1 (S1P1), CYM-5442, maintains the integrity of the BBB by restricting vesicle transcytosis during acute ischaemic stroke. In the current study, we investigated whether CYM-5442, evaluated in a short-term study, could protect the brains of mice with acute-stage TBI by reversing the increase in vesicle transport due to reduced Mfsd2a expression after TBI. METHODS: We used the well-characterized model of TBI caused by controlled cortical impact. CYM-5442 (0.3, 1, 3 mg/kg) was intraperitoneally injected 30 min after surgery for 7 consecutive days. To investigate the effect of CYM-5442 on vesicle transcytosis, we downregulated and upregulated Mfsd2a expression using a specific AAV prior to evaluation of the TBI model. MRI scanning, cerebral blood flow, circulating blood counts, ELISA, TEM, WB, and immunostaining evaluations were performed after brain injury. RESULTS: CYM-5442 significantly attenuated neurological deficits and reduced brain oedema in TBI mice. CYM-5442 transiently suppressed lymphocyte trafficking but did not induce persistent lymphocytopenia. After TBI, the levels of Mfsd2a were decreased significantly, while the levels of CAV-1 and albumin were increased. In addition, Mfsd2a deficiency caused inadequate sphingosine-1-phosphate (S1P) transport in the brain parenchyma, and the regulation of BBB permeability by Mfsd2a after TBI was shown to be related to changes in vesicle transcytosis. Downregulation of Mfsd2a in mice markedly increased the BBB permeability, neurological deficit scores, and brain water contents after TBI. Intervention with CYM-5442 after TBI protected the BBB by significantly reducing the vesicle transcytosis of cerebrovascular endothelial cells. CONCLUSION: In addition to transiently suppressing lymphocytes, CYM-5442 alleviated the neurological deficits, cerebral edema and protective BBB permeability in TBI mice by reducing the vesicle transcytosis of cerebrovascular endothelial cells.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Receptores de Esfingosina-1-Fosfato , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Receptores de Esfingosina-1-Fosfato/metabolismo , Acidente Vascular Cerebral/metabolismo , Transcitose
8.
Exp Neurol ; 347: 113899, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678230

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI. METHODS: The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies. RESULTS: JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were prevented by SR144528, a selective CB2 antagonist. CONCLUSIONS: This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.


Assuntos
Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/fisiologia , Substância Branca/metabolismo , eIF-2 Quinase/biossíntese , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/lesões , eIF-2 Quinase/antagonistas & inibidores
9.
Vis Comput Ind Biomed Art ; 3(1): 2, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32240438

RESUMO

Based on patient computerized tomography data, we segmented a region containing an intracranial hematoma using the threshold method and reconstructed the 3D hematoma model. To improve the efficiency and accuracy of identifying puncture points, a point-cloud search arithmetic method for modified adaptive weighted particle swarm optimization is proposed and used for optimal external axis extraction. According to the characteristics of the multitube drainage tube and the clinical needs of puncture for intracranial hematoma removal, the proposed algorithm can provide an optimal route for a drainage tube for the hematoma, the precise position of the puncture point, and preoperative planning information, which have considerable instructional significance for clinicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA