Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(12): 5113-5121, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302363

RESUMO

Baseline correction is a critical step for eliminating the interference of baseline drift in spectroscopic analysis. The recently proposed sparse Bayesian learning (SBL)-based method can significantly improve the baseline correction performance. However, it has at least two disadvantages: (i) it works poorly for large-scale datasets and (ii) it completely ignores the burst-sparsity structure of the sparse representation of the pure spectrum. In this paper, we present a new fast burst-sparsity learning method for baseline correction to overcome these shortcomings. The first novelty of the proposed method is to jointly adopt a down-sampling strategy and construct a multiple measurements block-sparse recovery problem with the down-sampling sequences. The down-sampling strategy can significantly reduce the dimension of the spectrum; while jointly exploiting the block sparsity among the down-sampling sequences avoids losing the information contained in the original spectrum. The second novelty of the proposed method is introducing the pattern-coupled prior into the SBL framework to characterize the inherent burst-sparsity in the sparse representation of spectrum. As illustrated in the paper, burst-sparsity commonly occurs in peak zones with more denser nonzero coefficients. Properly utilizing such burst-sparsity can further enhance the baseline correction performance. Results on both simulated and real datasets (such as FT-IR, Raman spectrum, and chromatography) verify the substantial improvement, in terms of estimation accuracy and computational complexity.


Assuntos
Algoritmos , Teorema de Bayes , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Proteome Res ; 16(8): 2709-2728, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675788

RESUMO

Osteoblasts communicate both with normal cells in the bone marrow and with tumor cells that metastasized to bone. Here we show that osteoblasts release exosomes, we termed osteosomes, which may be a novel mechanism by which osteoblasts communicate with cells in their environment. We have isolated exosomes from undifferentiated/proliferating (D0 osteosomes) and differentiated/mineralizing (D24 osteosomes) primary mouse calvarial osteoblasts. The D0 and D24 osteosomes were found to be vesicles of 130-140 nm by dynamic light scattering analysis. Proteomics profiling using tandem mass spectrometry (LC-MS/MS) identified 206 proteins in D0 osteosomes and 336 in D24 osteosomes. The proteins in osteosomes are mainly derived from the cytoplasm (∼47%) and plasma membrane (∼31%). About 69% of proteins in osteosomes are also found in Vesiclepedia, and these canonical exosomal proteins include tetraspanins and Rab family proteins. We found that there are differences in both protein content and levels in exosomes isolated from undifferentiated and differentiated osteoblasts. Among the proteins that are unique to osteosomes, 169 proteins are present in both D0 and D24 osteosomes, 37 are unique to D0, and 167 are unique to D24. Among those 169 proteins present in both D0 and D24 osteosomes, 10 proteins are likely present at higher levels in D24 than D0 osteosomes based on emPAI ratios of >5. These results suggest that osteosomes released from different cellular state of osteoblasts may mediate distinct functions. Using live-cell imaging, we measured the uptake of PKH26-labeled osteosomes into C4-2B4 and PC3-mm2 prostate cancer cells. In addition, we showed that cadherin-11, a cell adhesion molecule, plays a role in the uptake of osteosomes into PC3-mm2 cells as osteosome uptake was delayed by neutralizing antibody against cadherin-11. Together, our studies suggest that osteosomes could have a unique role in the bone microenvironment under both physiological and pathological conditions.


Assuntos
Calcificação Fisiológica , Proliferação de Células , Exossomos/química , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Proteínas/análise , Animais , Caderinas/fisiologia , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Microambiente Celular/fisiologia , Exossomos/patologia , Humanos , Masculino , Camundongos , Osteoblastos/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica/métodos
3.
J Cell Sci ; 128(24): 4629-41, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519476

RESUMO

Cadherin-11 (Cad11) cell adhesion molecule plays a role in prostate cancer cell migration. Because disassembly of adhesion complexes through endocytosis of adhesion proteins has been shown to play a role in cell migration, we examined whether Cad11 endocytosis plays a role in Cad11-mediated migration. The mechanism by which Cad11 is internalized is unknown. Using a GST pulldown assay, we found that clathrin binds to the Cad11 cytoplasmic domain but not to that of E-cadherin. Using deletion analysis, we identified a unique sequence motif, VFEEE, in the Cad11 membrane proximal region (amino acid residues 11-15) that binds to clathrin. Endocytosis assays using K(+)-depletion buffer showed that Cad11 internalization is clathrin dependent. Proximity ligation assays showed that Cad11 colocalizes with clathrin, and immunofluorescence assays showed that Cad11 localizes in vesicles that stain for the early endosomal marker Rab5. Deletion of the VFEEE sequence from the Cad11 cytoplasmic domain (Cad11-cla-Δ5) leads to inhibition of Cad11 internalization and reduces Cad11-mediated cell migration in C4-2B and PC3-mm2 prostate cancer cells. These observations suggest that clathrin-mediated internalization of Cad11 regulates surface trafficking of Cad11 and that dynamic turnover of Cad11 regulates the migratory function of Cad11 in prostate cancer cells.


Assuntos
Caderinas/metabolismo , Movimento Celular , Clatrina/metabolismo , Endocitose , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Clatrina/genética , Células HEK293 , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica
4.
Anal Biochem ; 477: 98-104, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25677266

RESUMO

Over the past decade, the real-time cell analyzer (RTCA) has provided a good tool to the cell-based in vitro assay. Unlike the traditional systems that label the target cells with luminescence, fluorescence, or light absorption, RTCA monitors cell properties using noninvasive and label-free impedance measuring. However, realization of the maximum value of RTCA for applications will require assurance of within-experiment repeatability, day-to-day repeatability, and robustness to variations in conditions that might occur from different experiments. In this article, the performance and variability of RTCA is evaluated and a novel repeatability index (RI) is proposed to analyze the intra-/inter-E-plate repeatability of RTCA. The repeatability assay involves six cell lines and two media (water [H2O] and dimethyl sulfoxide [DMSO]). First, six cell lines are exposed to the media individually, and time-dependent cellular response curves characterized as a cell index (CI) are recorded by RTCA. Then, the variations along sampling time and among repeated tests are calculated and RI values are obtained. Finally, a discriminating standard is set up to evaluate the degree of repeatability. As opposed to the standardized methodologies, it is shown that the presented index can give the quantitative evaluation for repeatability of RTCA within E-plate and variation on different days.


Assuntos
Técnicas Citológicas/métodos , Linhagem Celular , Humanos , Reprodutibilidade dos Testes , Fatores de Tempo
5.
Ecotoxicol Environ Saf ; 114: 134-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25637748

RESUMO

Chemical and physical analyses are commonly used as screening methods for the environmental water. However, these methods can only look for the targeted substance but may miss unexpected toxicants. Furthermore, the synergistic effects of mixture cannot be detected. In order to set up the assay criteria for determining various biological activities at a cellular level that could potentially lead to toxicity of environmental water samples, a novel test based on cellular response by using Real-Time Cellular Analyzer (RTCA) is proposed in this study. First, the water sample is diluted to a series of strengths (80%, 60%, 40%, 30%, 20% and 10%) to get the multi-concentration cellular response profile. Then, the area under the cellular response profile (AUCRP) is calculated. Comparing to the normal cell growth of negative control, a new biological activity index named Percentage of Effect (PoE) has been presented which reflects the cumulative inhibitory activity of cell growth over the log-phase. Finally, a synthetical index PoE50 is proposed to evaluate the intensity of biological activities in water samples. The biological experiment demonstrates the effectiveness of the proposed method.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Poluentes Químicos da Água/toxicidade , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Ecotoxicologia/métodos , Humanos
6.
Acta Biomater ; 178: 83-92, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387748

RESUMO

Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Osso e Ossos/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Osteoblastos/patologia
7.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849015

RESUMO

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Assuntos
Apoptose , Neoplasias Ósseas , Carcinoma de Células Renais , Proteínas da Matriz Extracelular , Junções Comunicantes , Neoplasias Renais , Osteócitos , Osteócitos/metabolismo , Osteócitos/patologia , Humanos , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/secundário , Apoptose/efeitos dos fármacos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Progressão da Doença , Conexina 43/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Osteólise/patologia , Osteólise/metabolismo , Feminino
8.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38765966

RESUMO

Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS: SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.

9.
J Neurooncol ; 110(2): 155-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22886530

RESUMO

Meningiomas, one of the most common benign brain tumors in humans, arise from arachnoid cells in the brain meninges. Our investigations have revealed that miR-335 is a typical microRNA overexpressed in meningiomas in humans. Characterization of the effects of miR-335 overexpression in meningiomas demonstrated that elevated levels of miR-335 increased cell growth and inhibited cell cycle arrest in the G0/G1 phase in vitro; in addition, reduction of the miR-335 levels had the opposite effect on tumor growth and progression. Further, previous studies have shown that the mechanism of effect of miR-335 on the proliferation of meningioma cells is associated with alterations in the expression of human retinoblastoma 1 (Rb1). Our results indicate that miR-335 plays an essential role in the proliferation of meningioma cells by directly targeting the Rb1 signaling pathway. Thus, our results highlight a novel molecular interaction between miR-335 and Rb1, and miR-335 may represent a potential novel therapeutic agent to target the proliferation of meningioma cells.


Assuntos
Proliferação de Células , Neoplasias Meníngeas/genética , Meningioma/genética , MicroRNAs/genética , Proteína do Retinoblastoma/metabolismo , Western Blotting , Ciclo Celular , Sobrevivência Celular , Humanos , Luciferases/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/metabolismo , Meningioma/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
10.
Anal Bioanal Chem ; 404(6-7): 2033-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941066

RESUMO

The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.


Assuntos
Técnicas Biossensoriais/métodos , Proliferação de Células , Células/química , Ensaios de Triagem em Larga Escala/métodos , Hipoxantina Fosforribosiltransferase/genética , Mutação , Animais , Células/citologia , Células/enzimologia , Cricetinae , Hipoxantina Fosforribosiltransferase/metabolismo , Cinética
11.
Int J Cancer ; 128(10): 2251-60, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21207412

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of melanin-positive, dopaminergic neurons in the substantia nigra. Although there is convincing epidemiologic evidence of a negative association between PD and most cancers, a notable exception to this is that melanoma, a malignant tumor of melanin-producing cells in skin, occurs with higher-than-expected frequency among subjects with PD and that melanoma patients are more likely to have PD. A clear biological explanation for this epidemiological observation is lacking. Here, we present a comprehensive review of published literature exploring the association between PD and melanoma. On the basis of published findings, we conclude that (i) changes in pigmentation including melanin synthesis and/or melanin synthesis enzymes, such as tyrosinase and tyrosine hydroxylase, play important roles in altered vulnerability for both PD and melanoma; (ii) changes of PD-related genes such as Parkin, LRRK2 and α-synuclein may increase the risk of melanoma; (iii) changes in some low-penetrance genes such as cytochrome p450 debrisoquine hydroxylase locus, glutathione S-transferase M1 and vitamin D receptor could increase the risk for both PD and melanoma and (iv) impaired autophagy in both PD and melanoma could also explain the association between PD and melanoma. Future studies are required to address whether altered pigmentation, PD- or melanoma-related gene changes and/or changes in autophagy function induce oncogenesis or apoptosis. From a clinical point of view, early diagnosis of melanoma in PD patients is critical and can be enhanced by periodic dermatological surveillance, including skin biopsies.


Assuntos
Melanoma/complicações , Doença de Parkinson/complicações , Humanos , Incidência , Fatores de Risco
12.
Neurosignals ; 19(3): 163-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21778691

RESUMO

Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/uso terapêutico , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Animais , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inseticidas/toxicidade , Microscopia Imunoeletrônica/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Resveratrol , Rotenona/toxicidade , Fatores de Tempo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
13.
Zhonghua Wai Ke Za Zhi ; 49(5): 440-4, 2011 May 01.
Artigo em Zh | MEDLINE | ID: mdl-21733403

RESUMO

OBJECTIVES: To investigate the function and possible mechanisms of PIAS3 expression on the invasion of TJ905 cells. METHODS: PIAS3 overexpression vectors were constructed and PIAS3 siRNA were chemically synthesized, which were separately transfected into TJ905 cells for upregulation or downregulation of PIAS3 expression levels in TJ905 cells. After that, the invasive effects of TJ905 cells were measured by Transwell assay, and the expression of PIAS3, tissue inhibitor of metalloproteinases (TIMP)3, matrix metalloprotease (MMP)-2, and MMP-9 were identified by Western blot. RESULTS: In vitro transfection efficiency of plasmids and oligonucleotides were separately 85.3% ± 3.1% and 95.1% ± 2.9%. PIAS3 overexpression plasmid transfection in vitro could effectively improve the expression of PIAS3 protein in TJ905 cells and inhibit the invasion of TJ905 cells (P < 0.05), and cell penetration ratio reduced from 87.9% ± 9.3% to 37.3% ± 7.9% compared with control group, while it upregulated TIMP3 and downregulated MMP-2, MMP-9 protein expression (P < 0.05); PIAS3 siRNA transfection could inhibit the PIAS3 protein expression of TJ905 cells and promote the invasion of TJ905 cells (P < 0.05), and cell penetration ratio increased from 83.9% ± 7.1% to 93.2% ± 3.1% compared with control group, while it downregulated TIMP3 and upregulated MMP-2, MMP-9 protein expression (P < 0.05). CONCLUSION: PIAS3 expression is closely related to the invasion properties of glioma TJ905 cells.


Assuntos
Glioma/patologia , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos , Glioma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Chaperonas Moleculares/genética , Invasividade Neoplásica , Proteínas Inibidoras de STAT Ativados/genética , RNA Interferente Pequeno/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Transfecção
14.
J Bone Oncol ; 31: 100399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34745857

RESUMO

Renal cell carcinoma (RCC) is the most common malignancy of the kidney, representing 80-90% of renal neoplasms, and is associated with a five-year overall survival rate of approximately 74%. The second most common site of metastasis is bone. As patients are living longer due to new RCC targeting agents and immunotherapy, RCC bone metastases (RCCBM) treatment failure is more prevalent. Bone metastasis formation in RCC is indicative of a more aggressive disease and worse prognosis. Osteolysis is a prominent feature and causes SRE, including pathologic fractures. Bone metastasis from other tumors such as lung, breast, and prostate cancer, are more effectively treated with bisphosphonates and denosumab, thereby decreasing the need for palliative surgical intervention. Resistance to these antiresportives in RCCBM reflects unique cellular and molecular mechanisms in the bone microenvironment that promote progression via inhibition of the anabolic reparative response. Identification of critical mechanisms underlying RCCBM induced anabolic impairment could provide needed insight into how to improve treatment outcomes for patients with RCCBM, with the goals of minimizing progression that necessitates palliative surgery and improving survival.

15.
Oncogene ; 40(27): 4592-4603, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127814

RESUMO

A fraction of patients undergoing androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) will develop recurrent castrate-resistant PCa (CRPC) in bone. Strategies to prevent CRPC relapse in bone are lacking. Here we show that the cholesterol-lowering drugs statins decrease castration-induced bone marrow adiposity in the tumor microenvironment and reduce PCa progression in bone. Using primary bone marrow stromal cells (BMSC) and M2-10B4 cells, we showed that ADT increases bone marrow adiposity by enhancing BMSC-to-adipocyte transition in vitro. Knockdown of androgen receptor abrogated BMSC-to-adipocyte transition, suggesting an androgen receptor-dependent event. RNAseq analysis showed that androgens reduce the secretion of adipocyte hormones/cytokines including leptin during BMSC-to-adipocyte transition. Treatment of PCa C4-2b, C4-2B4, and PC3 cells with leptin led to an increase in cell cycle progression and nuclear Stat3. RNAseq analysis also showed that androgens inhibit cholesterol biosynthesis pathway, raising the possibility that inhibiting cholesterol biosynthesis may decrease BMSC-to-adipocyte transition. Indeed, statins decreased BMSC-to-adipocyte transition in vitro and castration-induced bone marrow adiposity in vivo. Statin pre-treatment reduced 22RV1 PCa progression in bone after ADT. Our findings with statin may provide one of the mechanisms to the clinical correlations that statin use in patients undergoing ADT seems to delay progression to "lethal" PCa.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Adiposidade , Humanos , Masculino , Neoplasias da Próstata
16.
iScience ; 24(4): 102388, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33981975

RESUMO

Cell type transition occurs during normal development and under pathological conditions. In prostate cancer bone metastasis, prostate cancer-secreted BMP4 induces endothelial cell-to-osteoblast (EC-to-OSB) transition. Such tumor-induced stromal reprogramming supports prostate cancer progression. We delineate signaling pathways mediating EC-to-OSB transition using EC lines 2H11 and SVR. We found that BMP4-activated pSmad1-Notch-Hey1 pathway inhibits EC migration and tube formation. BMP4-activated GSK3ß-ßcatenin-Slug pathway stimulates Osx expression. In addition, pSmad1-regulated Dlx2 converges with the Smad1 and ß-catenin pathways to stimulate osteocalcin expression. By co-expressing Osx, Dlx2, Slug and Hey1, we were able to achieve EC-to-OSB transition, leading to bone matrix mineralization in the absence of BMP4. In human prostate cancer bone metastasis specimens and MDA-PCa-118b and C4-2b-BMP4 osteogenic xenografts, immunohistochemical analysis showed that ß-catenin and pSmad1 are detected in activated osteoblasts rimming the tumor-induced bone. Our results elucidated the pathways and key molecules coordinating prostate cancer-induced stromal programming and provide potential targets for therapeutic intervention.

17.
IEEE/ACM Trans Comput Biol Bioinform ; 17(5): 1563-1572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30843848

RESUMO

Real-time cellular analyzer (RTCA) has been generally applied to test the cytotoxicity of chemicals. However, several factors impact the experimental quality. A non-negligible factor is the abnormal time-dependent cellular response curves (TCRCs) of the wells located at the edge of the E-plate which is defined as edge effect. In this paper, a novel statistical analysis is proposed to detect the edge effect. First, TCRCs are considered as observations of a random variable in a functional space. Then, functional principal component analysis (FPCA) is adopted to extract the principal component (PC) functions of the TCRCs, and the first and second PCs of these curves are selected to distinguish abnormal TCRCs. The average TCRC of the inner wells with the same culture environment is set as the standard. If the distance between the scoring point of the standard curve and one designated scoring point exceeds the defined threshold, the corresponding TCRC of the designated point should be removed automatically. The experimental results demonstrate the effectiveness of the proposed algorithm. This method can be used as a standard method to resolve general time-dependent series issues.


Assuntos
Biologia Computacional/métodos , Técnicas Citológicas/métodos , Análise de Componente Principal/métodos , Testes de Toxicidade/métodos , Algoritmos , Linhagem Celular Tumoral , Humanos , Fatores de Tempo
18.
Mol Cancer Ther ; 19(6): 1266-1278, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220969

RESUMO

Renal cell carcinoma bone metastases (RCCBM) are typically osteolytic. We previously showed that BIGH3 (beta Ig-h3/TGFBI), secreted by 786-O renal cell carcinoma, plays a role in osteolytic bone lesion in RCCBM through inhibition of osteoblast (OSB) differentiation. To study this interaction, we employed three-dimensional (3D) hydrogels to coculture bone-derived 786-O (Bo-786) renal cell carcinoma cells with MC3T3-E1 pre-OSBs. Culturing pre-OSBs in the 3D hydrogels preserved their ability to differentiate into mature OSB; however, this process was decreased when pre-OSBs were cocultured with Bo-786 cells. Knockdown of BIGH3 in Bo-786 cells recovered OSB differentiation. Furthermore, treatment with bone morphogenetic protein 4, which stimulates OSB differentiation, or cabozantinib (CBZ), which inhibits VEGFR1 and MET tyrosine kinase activities, also increased OSB differentiation in the coculture. CBZ also inhibited pre-osteoclast RAW264.7 cell differentiation. Using RCCBM mouse models, we showed that CBZ inhibited Bo-786 tumor growth in bone. CBZ treatment also increased bone volume and OSB number, and decreased osteoclast number and blood vessel density. When tested in SN12PM6 renal cell carcinoma cells that have been transduced to overexpress BIGH3, CBZ also inhibited SN12PM6 tumor growth in bone. These observations suggest that enhancing OSB differentiation could be one of the therapeutic strategies for treating RCCBM that exhibit OSB inhibition characteristics, and that this 3D coculture system is an effective tool for screening osteoanabolic agents for further in vivo studies.


Assuntos
Anilidas/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Diferenciação Celular , Neoplasias Renais/tratamento farmacológico , Osteoblastos/citologia , Osteólise/tratamento farmacológico , Piridinas/farmacologia , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células , Técnicas de Cocultura , Humanos , Técnicas In Vitro , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos SCID , Osteoblastos/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Brain ; 131(Pt 8): 1969-78, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18187492

RESUMO

The ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) are the two most important mechanisms that normally repair or remove abnormal proteins. Alterations in the function of these systems to degrade misfolded and aggregated proteins are being increasingly recognized as playing a pivotal role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease. Dysfunction of the UPS has been already strongly implicated in the pathogenesis of this disease and, more recently, growing interest has been shown in identifying the role of ALP in neurodegeneration. Mutations of alpha-synuclein and the increase of intracellular concentrations of non-mutant alpha-synuclein have been associated with Parkinson's disease phenotype. The demonstration that alpha-synuclein is degraded by both proteasome and autophagy indicates a possible linkage between the dysfunction of the UPS or ALP and the occurrence of this disorder. The fact that mutant alpha-synucleins inhibit ALP functioning by tightly binding to the receptor on the lysosomal membrane for autophagy pathway further supports the assumption that impairment of the ALP may be related to the development of Parkinson's disease. In this review, we summarize the recent findings related to this topic and discuss the unique role of the ALP in this neurogenerative disorder and the putative therapeutic potential through ALP enhancement.


Assuntos
Autofagia/fisiologia , Lisossomos/fisiologia , Degeneração Neural , Doença de Parkinson/patologia , Transdução de Sinais/fisiologia , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Quinases/metabolismo , Serina-Treonina Quinases TOR , Ubiquitina/metabolismo , alfa-Sinucleína/genética
20.
Mol Cancer Ther ; 7(5): 1207-17, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18483308

RESUMO

We tested our novel hypothesis that down-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha), the regulated subunit of HIF-1 transcription factor that controls gene expression involved in key functional properties of cancer cells (including metabolism, survival, proliferation, invasion, angiogenesis, and metastasis), contributes to a major antitumor mechanism of cetuximab, an approved therapeutic monoclonal antibody that blocks activation of the epidermal growth factor receptor. We showed that cetuximab treatment down-regulates HIF-1alpha levels by inhibiting synthesis of HIF-1alpha rather than by enhancing degradation of the protein. Inhibition of HIF-1alpha protein synthesis was dependent on effective inhibition of the phosphoinositide-3 kinase (PI3K)/Akt pathway by cetuximab, because the inhibition was prevented in cells transfected with a constitutively active PI3K or a constitutively active Akt but not in cells with a constitutively active MEK. Overexpression of HIF-1alpha conferred cellular resistance to cetuximab-induced apoptosis and inhibition of vascular endothelial growth factor production in sensitive cancer cell models, and expression knockdown of HIF-1alpha by RNA interference substantially restored cellular sensitivity to the cetuximab-mediated antitumor activities in experimental resistant cell models created by transfection of an oncogenic Ras gene (G12V) or by concurrent treatment of the cells with insulin-like growth factor-I. In summary, our data show that cetuximab decreases HIF-1alpha protein synthesis through inhibition of a PI3K-dependent pathway and that an effective down-regulation of HIF-1alpha is required for maximal therapeutic effects of cetuximab in cancer cells.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Regulação para Baixo , Receptores ErbB/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Cetuximab , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA