Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Genomics ; 116(5): 110926, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178997

RESUMO

During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.

2.
BMC Plant Biol ; 24(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163888

RESUMO

The 70 kD heat shock proteins (HSP70s) represent a class of molecular chaperones that are widely distributed in all kingdoms of life, which play important biological roles in plant growth, development, and stress resistance. However, this family has not been systematically characterized in radish (Raphanus sativus L.). In this study, we identified 34 RsHSP70 genes unevenly distributed within nine chromosomes of R. sativus. Phylogenetic and multiple sequence alignment analyses classified the RsHSP70 proteins into six distinct groups (Group A-F). The characteristics of gene structures, motif distributions, and corresponding cellular compartments were more similar in closely linked groups. Duplication analysis revealed that segmental duplication was the major driving force for the expansion of RsHSP70s in radish, particularly in Group C. Synteny analysis identified eight paralogs (Rs-Rs) in the radish genome and 19 orthologs (Rs-At) between radish and Arabidopsis, and 23 orthologs (Rs-Br) between radish and Chinese cabbage. RNA-seq analysis showed that the expression change of some RsHSP70s were related to responses to heat, drought, cadmium, chilling, and salt stresses and Plasmodiophora brassicae infection, and the expression patterns of these RsHSP70s were significantly different among 14 tissues. Furthermore, we targeted a candidate gene, RsHSP70-23, the product of which is localized in the cytoplasm and involved in the responses to certain abiotic stresses and P. brassicae infection. These findings provide a reference for further molecular studies to improve yield and stress tolerance of radish.


Assuntos
Arabidopsis , Raphanus , Raphanus/genética , Raphanus/metabolismo , Filogenia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Sintenia , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
3.
Environ Sci Technol ; 57(14): 5751-5760, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975752

RESUMO

Polychlorinated diphenyl ethers (PCDEs) are detected in aquatic environments and demonstrate adverse effects in aquatic organisms. However, data regarding the environmental behavior of PCDEs in aquatic ecosystems are lacking. In the present study, a simulated aquatic food chain (Scenedesmus obliquus-Daphnia magna-Danio rerio) was constructed in a lab setting, and the bioaccumulation, trophic transfer, and biotransformation of 12 PCDE congeners were quantitatively investigated for the first time. The log-transformed bioaccumulation factors (BCFs) of PCDEs in S. obliquus, D. magna, and D. rerio were in the range of 2.94-3.77, 3.29-4.03, and 2.42-2.89 L/kg w.w., respectively, indicating the species-specific bioaccumulation of PCDE congeners. The BCF values increased significantly with the increasing number of substituted Cl atoms, with the exception of CDE 209. The number of Cl atoms at the para and meta positions were found to be the major positive contributing factors for BCFs in the case of the same number of substituted Cl. The lipid-normalized biomagnification factors (BMFs) of S. obliquus to D. magna, D. magna to D. rerio, and the whole food chain for the 12 PCDE congeners ranged at 1.08-2.27, 0.81-1.64, and 0.88-3.64, respectively, suggesting that some congeners had BMFs comparable to PBDEs and PCBs. Dechlorination was the only metabolic pathway observed for S. obliquus and D. magna. For D. rerio, dechlorination, methoxylation, and hydroxylation metabolic pathways were observed. 1H nuclear magnetic resonance (NMR) experiments and theoretical calculations confirmed that methoxylation and hydroxylation occurred at the ortho position of the benzene rings. In addition, reliable quantitative structure-property relationship (QSPR) models were constructed to qualitatively describe the relationships between molecular structure descriptors and BCFs for PCDEs. These findings provide insights into the movement and transformation of PCDEs in aquatic ecosystems.


Assuntos
Éteres Difenil Halogenados , Poluentes Químicos da Água , Animais , Éteres Difenil Halogenados/química , Cadeia Alimentar , Bioacumulação , Ecossistema , Peixe-Zebra , Biotransformação , Poluentes Químicos da Água/metabolismo
4.
BMC Plant Biol ; 22(1): 44, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062884

RESUMO

BACKGROUND: Rice is highly sensitive to chilling stress during the seedling stage. However, the adaptable photo-thermo sensitive genic male sterile (PTGMS) rice line, Yu17S, exhibits tolerance to low temperatures. Currently, the molecular characteristics of Yu17S are unclear. RESULTS: To evaluate the molecular mechanisms behind cold responses in rice seedlings, a comparative transcriptome analysis was performed in Yu17S during seedling development under normal temperature and low temperature conditions. In total, 9317 differentially expressed genes were detected. Gene ontology and pathway analyses revealed that these genes were involved mostly in photosynthesis, carotenoid biosynthesis, carbohydrate metabolism and plant hormone signal transduction. An integrated analysis of specific pathways combined with physiological data indicated that rice seedlings improved the performance of photosystem II when exposed to cold conditions. Genes involved in starch degradation and sucrose metabolism were activated in rice plants exposed to cold stress treatments, which was accompanied by the accumulation of soluble sugar, trehalose, raffinose and galactinol. Furthermore, chilling stress induced the expression of phytoene desaturase, 15-cis-ζ-carotene isomerase, ζ-carotene desaturase, carotenoid isomerase and ß-carotene hydroxylase; this was coupled with the activation of carotenoid synthase activity and increases in abscisic acid (ABA) levels in rice seedlings. CONCLUSIONS: Our results suggest that Yu17S exhibited better tolerance to cold stress with the activation of carotenoid synthase activity and increasing of ABA levels, and as well as the expression of photosynthesis-related genes under cold condition in rice seedlings.


Assuntos
Resposta ao Choque Frio/fisiologia , Oryza/fisiologia , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Carotenoides/metabolismo , Resposta ao Choque Frio/genética , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Oryza/genética , Fotossíntese , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas , Plântula/genética , Plântula/fisiologia , Amido/genética , Amido/metabolismo , Sacarose/metabolismo
5.
BMC Genomics ; 22(1): 463, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157978

RESUMO

BACKGROUND: The amino acid/auxin permease (AAAP) family represents a class of proteins that transport amino acids across cell membranes. Members of this family are widely distributed in different organisms and participate in processes such as growth and development and the stress response in plants. However, a systematic comprehensive analysis of AAAP genes of the pepper (Capsicum annuum) genome has not been reported. RESULTS: In this study, we performed systematic bioinformatics analyses to identify AAAP family genes in the C. annuum 'Zunla-1' genome to determine gene number, distribution, structure, duplications and expression patterns in different tissues and stress. A total of 53 CaAAAP genes were identified in the 'Zunla-1' pepper genome and could be divided into eight subgroups. Significant differences in gene structure and protein conserved domains were observed among the subgroups. In addition to CaGAT1, CaATL4, and CaVAAT1, the remaining CaAAAP genes were unevenly distributed on 11 of 12 chromosomes. In total, 33.96% (18/53) of the CaAAAP genes were a result of duplication events, including three pairs of genes due to segmental duplication and 12 tandem duplication events. Analyses of evolutionary patterns showed that segmental duplication of AAAPs in pepper occurred before tandem duplication. The expression profiling of the CaAAAP by transcriptomic data analysis showed distinct expression patterns in various tissues and response to different stress treatment, which further suggest that the function of CaAAAP genes has been differentiated. CONCLUSIONS: This study of CaAAAP genes provides a theoretical basis for exploring the roles of AAAP family members in C. annuum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ácidos Indolacéticos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Environ Sci Technol ; 52(13): 7220-7229, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29888912

RESUMO

Photochemical materials are of scientific and practical importance in the field of photocatalysis. In this study, the photochemistry of several organic contaminants, including decabromodiphenyl ether (BDE-209), halogenated phenols (C6 X5OH, X = F, Cl, Br) and paraffin, on silica gel (SG) surface was investigated under simulated solar irradiation conditions. Photolysis of these compounds at the solid/air interface proceeds with different rates yielding various hydroxylation products, and hydroxyl radical was determined as the major reactive species. According to density functional theory (DFT) calculations, the reaction of physically adsorbed water with reactive silanone sites (>Si═O) on silica was indispensable for the generation of •OH radical, where the required energy matches well with the irradiation energy of visible light. Then, the BDE-209 was selected as a representative compound to evaluate the photocatalytic performance of SG under different conditions. The SG material showed good stability in the photodegradation process, and was able to effectively eliminate BDE-209 under natural sunlight. These findings provide new insights into the potential application of SG as a solid surface photocatalyst for contaminants removal.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Parafina , Fotólise , Sílica Gel , Luz Solar
7.
Environ Sci Technol ; 52(21): 12592-12601, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30299936

RESUMO

Potassium ferrate [Fe(VI)] is a promising oxidant widely used in water treatment for the elimination of organic pollutants. In this work, the reaction kinetics, products, and mechanisms of the antimicrobial agent chlorophene (CP) undergoing Fe(VI) oxidation in aqueous solutions were investigated. CP is very readily degraded by Fe(VI), with the apparent second-order rate constant, k, being 423.2 M-1 s-1 at pH 8.0. A total of 22 oxidation products were identified using liquid chromatography-quadrupole time-of-flight-mass spectrometry , and their structures were further elucidated using tandem mass spectrometry. According to the extracted peak areas in mass spectra, the main reaction products were the coupling products (dimers, trimers, and tetramers) that formed via single-electron coupling. Theoretical calculations demonstrated that hydrogen abstraction should easily occur at the hydroxyl group to produce reactive CP· radicals for subsequent polymerization. Cleavage of the C-C bridge bond, electrophilic substitution, hydroxylation, ring opening, and decarboxylation were also observed during the Fe(VI) oxidation process. In addition, the degradation of CP by Fe(VI) was also effective in real waters, which provides a basis for potential applications.


Assuntos
Diclorofeno , Poluentes Químicos da Água , Purificação da Água , Diclorofeno/análogos & derivados , Elétrons , Ferro , Cinética , Oxirredução
8.
Artigo em Inglês | MEDLINE | ID: mdl-36767373

RESUMO

Rice-duck and rice-crayfish co-culture patterns can increase soil productivity and sustainability and reduce the use of chemical pesticides and fertilizers, thereby reducing the resulting negative environmental impacts. However, most studies have focused on the rice-duck and rice-crayfish binary patterns and have ignored integrated systems (three or more), which may have unexpected synergistic effects. To test these effects, a paddy field experiment was carried out in the Chaohu Lake Basin, Hefei city, Southeast China. Four groups, including a rice-duck-crayfish ecological co-culture system (RDC), idle field (CK), single-season rice planting system (SSR), and double-season rice planting system (DSR), were established in this study. The results showed that the RDC improved the soil physical properties, fertility, humus content, and enzyme activity. In the RDC system, the soil total nitrogen content ranged from 8.54% to 28.37% higher than other systems in the 0-10 cm soil layer. Similar increases were found for soil total phosphorus (8.22-30.53%), available nitrogen (6.93-22.72%), organic matter (18.24-41.54%), urease activity (16.67-71.51%), and acid phosphatase activity (23.41-66.20%). Relative to the SSR treatment, the RDC treatment reduced the total losses of nitrogen and phosphorus runoff by 24.30% and 10.29%, respectively. The RDC also did not cause any harm to the soil in terms of heavy metal pollution. Furthermore, the RDC improved the yield and quality of rice, farmer incomes, and eco-environmental profits. In general, the RDC can serve as a valuable method for the management of agricultural nonpoint-source pollution in the Chaohu Lake area and the revitalization of the countryside.


Assuntos
Oryza , Solo , Animais , Solo/química , Patos , Astacoidea , Técnicas de Cocultura , Agricultura/métodos , Fósforo/análise , China , Fertilizantes , Nitrogênio/análise
9.
Sci Total Environ ; 870: 161756, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36690111

RESUMO

Due to wide applications, halophenols (HPs), especially bromophenols, chlorophenols, and fluorophenols, are commonly detected but resistant to biological removal in wastewater treatment plants (WWTPs). This study investigated the overall transformation behaviors of three representative HPs (2,4-dichlorophenol: 24-DCP, 2,4-dibromophenol: 24-DBP, 2,4-difluorophenol: 24-DFP) in six chemical oxidative systems (KMnO4, K2FeO4, NaClO, O3, UV, and persulfate (PS)). The results revealed fast removal of selected HPs by O3, PS and K2FeO4, while a large discrepancy in their removal efficiencies occurred under UV irradiation, KMnO4 oxidation and particularly chlorination. Based on the analysis of the identified intermediates and products, coupling among the five routes was the general route, and dimers were the main intermediates for HP oxidation. The effect of the halogen atom on the transformation pathways of HPs was highly reaction type dependent. Among the six chemical treatments, PS could induce HPs to yield relatively low-molecular-weight polymers and obtain the highest coupling degree. Transition state (TS) calculations showed that the H atom linked to the phenoxy group of HPs was the most easily abstracted by hydroxyl radicals to form the coupling precursor, i.e., phenoxy radicals. This high coupling behavior further resulted in the increased toxicity to green algae. Characterization revealed that HP reaction solutions treated with PS had a severely negative effect on algae growth, photosynthetic pigment synthesis, and the antioxidant enzyme system. These findings can shed light on the reaction mechanisms of advanced oxidation technologies and some risk management and control of PS technique may be considered when treating phenolic pollutants.

10.
Water Res ; 210: 118025, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34991014

RESUMO

Bisphenol E (bis (4-hydroxyphenyl) ethane, BPE), as a typical endocrine disrupting chemical, is commonly detected in source water and drinking water, which poses potential risks to human health and ecological environment. This paper investigated the removal of BPE by ferrate(VI) (FeVIO42-, Fe(VI)) in water. Under the optimal condition of [Fe(VI)]0:[BPE]0 = 10:1 and pH = 8.0, a removal efficiency of 99% was achived in 180 s. Sixteen intermediates of BPE were detected, and four possible reaction pathways were proposed, which mainly involved the reaction modes of double-oxygen and single-oxygen transfer, bond breaking, carboxylation and polymerization. The double-oxygen transfer mechanism, different from traditional mechanisms, was newly proposed to illustrate the direct generation of di-hydroxylated products from parent BPE, which was demonstrated by theoretical calculations for its rationality. Significantly, NO2-, HCO3-, Cu2+, and humic acid, constituents of water promoted the removal of BPE. Additionally, samples from river, tap water, synthetic wastewater, and secondary effluent were tested to explore the feasibility of Fe(VI) oxidation for treating BPE in water. It was found that 99% of BPE was degraded within 300 s in these waters except for synthetic wastewater. The toxicity of BPE and its intermediates was evaluated by ECOSAR program, and the results showed that Fe(VI) oxidation decreased the toxicity of reaction solutions. These findings demonstrated that the Fe(VI) oxidation process was an efficient and green method for the treatment of BPE, and the new insights into the double-oxygen transfer mechanism aid to understand the reaction mechanisms of organic pollutants oxidized by Fe(VI).


Assuntos
Compostos Benzidrílicos , Ferro , Humanos , Cinética , Fenóis
11.
J Hazard Mater ; 438: 129467, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779399

RESUMO

The sesame straw-derived biochar was successfully prepared via alkaline hydrogen peroxide (AHP) pretreatment in this study. Systematic experimental characterizations, 15 relevant batch and column adsorption models, combined with density functional theory (DFT) calculation were used to investigate the performances and micro-mechanisms of Cd2+ adsorption onto biochar. We found AHP-pretreatment could greatly improve the adsorption performance of biochar for Cd2+. The maximum Cd2+ adsorption capacity of AHP-pretreated biochar (87.13 mg g-1) was much larger than that of unpretreated biochar. Cd2+ adsorption was mainly dominated by the chemisorption of the homogeneous surface monolayer. The hydroxyl and carboxyl groups on the surface of biochar provided preferential adsorption sites, and liquid film diffusion and intra-particle diffusion were two dominant rate-controlling steps. Our results showed that ion exchange, co-precipitation, surface complexation, and Cd2+-π interaction were the dominant adsorption mechanisms. Especially, DFT calculations well-identified that lone-pair electrons during complexation and π electrons during coordination were provided by oxygen-containing functional groups and aromatic rings, respectively. The experimental breakthrough curves fitted better with the theoretical value of the BJP model, compared to Thomas, Yoon-Nelson, and EXY models. Overall, our study provides a promising method for Cd2+ removal from wastewater and resource utilization of agricultural wastes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Peróxido de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-36141619

RESUMO

Considering the frequent detection of polychlorinated dibenzothiophenes (PCDTs) in various environmental matrices and the potential ecological health risks, the environmental behavior of such compounds needs to be elucidated further. In this work, the sorption behavior of 2,3,7,8-tetrachlorodibenzothiophene (2,3,7,8-TCDT) onto three sediments and paddy soil from Chaohu Lake were investigated via batch equilibration experiments. From the perspective of sorption kinetics and isotherms, the sorption characteristics and mechanism of 2,3,7,8-TCDT on the above four carriers were compared, and the relationship between their structural characteristics and soil sorption capacity was discussed. Results suggested that rapid sorption played the primary role during the sorption process of 2,3,7,8-TCDT and the corresponding sorption isotherms were well fitted using the Freundlich logarithmic model. Moreover, the effects of pH and dissolved organic matter (DOM) on the sorption of 2,3,7,8-TCDT were investigated. The maximum sorption capacity of 2,3,7,8-TCDT on sediment was under acidic pH condition (pH = 4.0). Meanwhile, DOM at a low level promoted the sorption capacity of sediment toward 2,3,7,8-TCDT, while the high concentration of DOM inhibited this effect. In addition, the values of logKoc were obtained using high-performance liquid chromatography (HPLC) and did not show any significant correlation with organic carbon (OC) contents, thereby indicating that the partition effect was the dominating influencing factor for the sorption of 2,3,7,8-TCDT both on sediments and soil. This work provides useful data to understand the sorption behavior of 2,3,7,8-TCDT on sediments and soil and assess its potential environmental risk.


Assuntos
Poluentes do Solo , Solo , Adsorção , Carbono/química , Sedimentos Geológicos/química , Lagos , Solo/química , Poluentes do Solo/análise
13.
Environ Pollut ; 306: 119394, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525513

RESUMO

Dichlorophenol (DCP), a commonly used fungicide and insecticide, is widely found in waters and wastewaters. Herein, the degradation of DCP by Ferrate (Fe(VI)) in different matrices was comprehensively investigated. In pure water, a complete removal of DCP was achieved in 300 s at [Fe(VI)]:[DCP] molar ratio of 2:1. The presence of HA (10 mg L-1) inhibited DCP degradation to a certain extent. A total of twenty degradation products were identified by HPLC/MS analysis. Based on these products, reaction pathways including the cleavage of C-C bridge bond, hydroxylation, and radical coupling were proposed. These reaction mechanisms were further rationalized by theoretical calculations. The analyses of Wiberg bond orders and transition state indicated that C7-C8 bond was the most vulnerable site for cleavage, and C12 site was the most likely site for hydroxyl addition. Mulliken atomic spin densities distribution suggested that self-coupling products was easily generated via C-O-C coupling ways. Finally, the feasibility of applying Fe(VI) to degrade DCP (20 µM) in a municipal wastewater effluent and a lake water was evaluated and verified. The findings in this study are of relevance in designing Fe(VI)-based treatment strategy for chlorine-containing persistent pesticides.


Assuntos
Diclorofeno , Poluentes Químicos da Água , Purificação da Água , Cinética , Modelos Teóricos , Oxirredução , Estresse Oxidativo , Fenóis , Águas Residuárias , Água , Poluentes Químicos da Água/análise
14.
Water Res ; 194: 116916, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607389

RESUMO

We systemically investigated the transformation behavior of 2,4-dichlorophenol (24-DCP) in seven different reaction systems including KMnO4, heat/PS, O3, UV, Fenton, NaClO and K2FeO4 treatment. The results revealed that complete removal of 24-DCP could be reached in minutes, especially for Fe(VI), KMnO4, NaClO, Fenton and O3 system. A total of 41 products were identified by LC-MS, and 10 of them were validated using commercial and self-synthesized standards. Hydroxyl substitution and coupling reactions were commonly observed in the studied systems. Meanwhile, extra routes such as sulfate substitution, (de)chlorination and direct oxidation were also involved for certain oxidation methods. Comparisons showed that a high degree of chlorination (>90%) occurred for NaClO system, while coupling products accounted for ~45% of the removed 24-DCP under PS oxidation. Moreover, low mineralization degree together with high aquatic toxicity was attributed to the occurrence of coupling reaction, which was possibly related to the redox potential of the main oxidative species. Considering the low abundance of coupling products and the gentle reaction condition, UV irradiation is a better option for 24-DCP removal in water and wastewaters. These findings can deepen our understanding on the transformation process of 24-DCP and provide some useful information for the environmental elimination of substituted phenols.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Halogenação , Hidroxilação , Oxirredução , Fenóis
15.
Sci Total Environ ; 771: 144743, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540164

RESUMO

2,4-Dihydroxybenzophenone (BP-1), a typically known derivative of the benzophenone-type UV filter, has been frequently detected in aqueous environments and poses a potential risk to human health and the entire ecosystem. In this study, an effective advanced oxidation technique using zero-valent iron powder (Fe0)-activated persulfate (PS) was used for the degradation of BP-1. The effects of several experimental parameters, including Fe0 dosages, PS dosages, pH, and common natural water constituents, were systematically investigated. The BP-1 degradation efficiency was enhanced by increasing the Fe0 and PS dosages and decreasing the solution pH. The presence of different concentrations of humic acid (HA) could inhibit BP-1 removal, while the addition of various cations and anions had different effects on the degradation. Moreover, the degradation of BP-1 in five water matrices was also compared, and the removal rates followed the order of ultrapure water > tap water > secondary clarifier effluent > river water > synthetic water. Thirteen oxidation products were identified by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis, and five possible degradation pathways were proposed. The addition reactions initiated by HO and SO4-, as well as single-electron coupling reactions and ring-closing reactions, were further supported by density functional theory (DFT) calculations. Assessment of toxicity of intermediates of the oxidation of BP-1 suggested decreased toxicity from the parent contaminant. The present work illustrates that BP-1 could be efficiently degraded in the Fe0/PS system, which may provide new insights into the removal of benzophenones in water and wastewater.

16.
Chemosphere ; 257: 127256, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531489

RESUMO

Five kinds of Al2O3 were characterized by SEM, TEM, FT-IR and BET surface area, and then used as carriers to investigate the photochemical removal of hexachlorobenzene (HCB) in aqueous system. The results showed that HCB coated on the surfaces of all Al2O3 could be photodegraded rapidly, and Neutral-Al2O3 presented the best performance. Meanwhile, the efficient removal of HCB in real water matrices, including tap water, river water and secondary clarifier effluent showed the potential practical application of Al2O3. EPR and theoretical calculation revealed the generation of hydroxyl radicals on Al2O3 surface under 500 W Xe lamp irradiation. Nine intermediates and a small amount of Cl- were identified by GC/MS, LC/MS and IC analysis, which was further verified by transition state calculations. These results can provide a new technique for HCB removal in water and wastewaters, and give more insights into the environmental ecological risk assessment of this pollutant.


Assuntos
Óxido de Alumínio/química , Hexaclorobenzeno/química , Poluentes Químicos da Água/química , Cromatografia Gasosa-Espectrometria de Massas , Radical Hidroxila/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Água
17.
Chemosphere ; 259: 127422, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32599382

RESUMO

Hexachlorophene (HCP) is used in a range of general cleaning and disinfecting products and has received increased attention due to its damaging effect to the central nervous system in animals and its toxicity in humans. The chemical oxidation of HCP by KMnO4 was performed to systematically evaluate the effects of oxidant dose, pH, temperature, typical anions, humic acid (HA), and various matrices on HCP removal. The second-order rate constant for HCP was determined to be 4.83 × 104 M-1 s-1 at pH 7.0 and 25 °C. The presence of HA can inhibit the removal of HCP by KMnO4, while Cl-, NO3-, SO42-, PO43-, and CO32- have negligible effects. Degradation products analysis of the reaction, as well as theoretical calculations of HCP molecule and its phenoxy radical species, indicated that KMnO4 oxidation for HCP included a C-C bridge bond cleavage, hydroxylation, direct oxidation and self-coupling, and cross-coupling reactions. This study revealed that KMnO4 oxidation is an effective technique for eliminating HCP in real water and wastewater.


Assuntos
Hexaclorofeno/química , Poluentes Químicos da Água/química , Substâncias Húmicas/análise , Cinética , Oxidantes , Oxirredução , Águas Residuárias/análise , Água/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
Environ Pollut ; 258: 113678, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31796318

RESUMO

In this study, the degradation of eight bromophenols (BPs), including monobromophenols (2-BP, 3-BP, and 4-BP), dibromophenols (2,4-DBP, 2,6-DBP, and 3,5-DBP), a tribromophenol (2,4,6-TBP) and a pentabromophenol (PBP), by a Fe(VI) reaction process at a pH of 8.0 was systematically studied. It was concluded that their degradation rates increased with increasing Fe(VI) concentrations in solution. The removal of 2,4,6-TBP, 2-BP, and 2,6-DBP was faster than that of the other five BPs, which could be attributed to the position of the substituting Br atom. Moreover, the direct oxidation and coupling reactions greatly influenced the reactivity of the bromophenols with Fe(VI). The electron paramagnetic resonance (EPR) analysis confirmed the presence of hydroxyl radicals in present system. The oxidation reaction products of PBP and 2-BP were recognized by an electrospray time-of-flight mass spectrometer; hydroxylation, hydroxyl substitution, the cleavage of the C-C bond, direct oxidation and polymerization via an end linking mechanism were noticeably found in the reaction process, resulting in the formation of polymerization products and causing hydroxylation to occur. Theoretical calculations further determined the possible oxidation sites of 2-BP and PBP. This study may provide comprehensive and important information on the remediation of BPs by Fe(VI).


Assuntos
Poluentes Ambientais/química , Fenóis/química , Ferro/química , Cinética , Modelos Químicos , Oxirredução , Estresse Oxidativo
19.
J Hazard Mater ; 398: 122876, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768816

RESUMO

The direct photolysis of 25 individual polychlorinated diphenyl sulfides (PCDPSs) substituted with 1-7 chlorine atoms was investigated using a 500-W Xe lamp. Photolysis of PCDPSs followed pseudo-first-order kinetics, with the higher chlorinated diphenyl sulfides generally degrading faster than the lower chlorinated congeners. A quantitative structure-activity relationship model to predict the photolysis rates of PCDPSs was developed using 16 fundamental quantum chemical descriptors. We found that the substitution pattern for chlorine atoms, the dipole moment, and ELUMO - EHOMO were major factors in the photolysis of PCPDSs. The reaction kinetics, products, and photodegradation pathways of 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) suggest hydroxylation, direct photooxidation, the C-S bond cleavage reaction, and hydroxyl substitution were mainly involved in the photodegradation process, leading to the formation of 13 intermediates, detected by an electrospray time-of-flight mass spectrometer. The initial reaction sites of PCDPSs under photolysis were rationalized by density functional theory calculations. Anions (Cl-, SO42-, NO3-, and HCO3-) and Co2+ had no influence on the removal of PeCDPS, while Fe3+, Cu2+, and HA decreased the photolysis efficiency of PeCDPS. This report is the first to develop a logk quantitative structure-property relationships (QSPR) model of 25 PCDPSs and to describe mechanistic pathways for the photolysis of PeCDPS.

20.
J Mol Evol ; 69(6): 625-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19888543

RESUMO

Multiple isoforms of starch synthases (SSs) have been found in plants. In addition, at least two isoforms of granule-bound SS (GBSS) and SSII have further diverged in cereals into two or three subisoforms. Here, we report the occurrence, phylogeny, and expression patterns of two different forms of both GBSSI and SSII in four legumes: birdsfoot trefoil, cowpea, mung bean, and soybean. The phylogenetic data acquired indicate that the putative proteins of both SS duplicates have diverged into two different isoforms: GBSSIa and GBSSIb, and SSIIa and SSIIb. The SSIIb genes appear to have become non-functional in soybean as a result of two nonsense mutations in the putative coding region. Transcripts of the GBSSIa and SSIIa genes were found to be abundant in cotyledons, but had lower expression levels in the leaves of the two starchy seed legumes. However, these genes were expressed at moderate levels in the leaves of the two oilseed legumes. In contrast, the GBSSIb and SSIIb genes were mainly expressed in the leaves of the legumes we examined. In both the legume and cereal species we studied, the GBSS orthologs that were mainly expressed in sink tissues, were more hydrophilic and may have been subjected to more intense purifying selection than those that were mainly expressed in source tissues. These findings provide evidence that the GBSSI and SSII genes in the starchy seed legumes and cereals studied have undergone convergent evolution with respect to evolutionary constraints, amino acid sequences, and expression divergence after gene duplication.


Assuntos
Evolução Molecular , Fabaceae/enzimologia , Isoenzimas/genética , Magnoliopsida/enzimologia , Filogenia , Sintase do Amido/genética , Sequência de Aminoácidos , Fabaceae/genética , Duplicação Gênica , Isoenzimas/química , Isoenzimas/metabolismo , Magnoliopsida/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sintase do Amido/química , Sintase do Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA