Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7931): 308-312, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163288

RESUMO

Exploring the subsurface structure and stratification of Mars advances our understanding of Martian geology, hydrological evolution and palaeoclimatic changes, and has been a main task for past and continuing Mars exploration missions1-10. Utopia Planitia, the smooth plains of volcanic and sedimentary strata that infilled the Utopia impact crater, has been a prime target for such exploration as it is inferred to have hosted an ancient ocean on Mars11-13. However, 45 years have passed since Viking-2 provided ground-based detection results. Here we report an in situ ground-penetrating radar survey of Martian subsurface structure in a southern marginal area of Utopia Planitia conducted by the Zhurong rover of the Tianwen-1 mission. A detailed subsurface image profile is constructed along the roughly 1,171 m traverse of the rover, showing an approximately 70-m-thick, multi-layered structure below a less than 10-m-thick regolith. Although alternative models deserve further scrutiny, the new radar image suggests the occurrence of episodic hydraulic flooding sedimentation that is interpreted to represent the basin infilling of Utopia Planitia during the Late Hesperian to Amazonian. While no direct evidence for the existence of liquid water was found within the radar detection depth range, we cannot rule out the presence of saline ice in the subsurface of the landing area.

2.
Proc Natl Acad Sci U S A ; 119(39): e2211234119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122246

RESUMO

Whether or not nonavian dinosaur biodiversity declined prior to the end-Cretaceous mass extinction remains controversial as the result of sampling biases in the fossil record, differences in the analytical approaches used, and the rarity of high-precision geochronological dating of dinosaur fossils. Using magnetostratigraphy, cyclostratigraphy, and biostratigraphy, we establish a high-resolution geochronological framework for the fossil-rich Late Cretaceous sedimentary sequence in the Shanyang Basin of central China. We have found only three dinosaurian eggshell taxa (Macroolithus yaotunensis, Elongatoolithus elongatus, and Stromatoolithus pinglingensis) representing two clades (Oviraptoridae and Hadrosauridae) in sediments deposited between ∼68.2 and ∼66.4 million y ago, indicating sustained low dinosaur biodiversity, and that assessment is consistent with the known skeletal remains in the Shanyang and surrounding basins of central China. Along with the dinosaur eggshell records from eastern and southern China, we find a decline in dinosaur biodiversity from the Campanian to the Maastrichtian. Our results support a long-term decline in global dinosaur biodiversity prior to 66 million y ago, which likely set the stage for the end-Cretaceous nonavian dinosaur mass extinction.


Assuntos
Biodiversidade , Dinossauros , Extinção Biológica , Fósseis , Animais , China , Dinossauros/classificação
3.
Langmuir ; 40(22): 11610-11625, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760180

RESUMO

Low solubility and chemical instability are the main problems with insoluble bioactives. Lignin, with its exceptional biological properties and amphiphilicity, holds promise as a delivery system material. In this study, glycerol esters were incorporated into alkali lignin (AL) through ether and ester bonds, resulting in the successful synthesis of three hydrophobically modified alkali lignins (AL-OA, AL-OGL, and AL-SAN-OGL). Subsequently, lignin composite nanoparticles (LNPs@BC) encapsulating ß-carotene were prepared using antisolvent and sonication techniques. The encapsulation rates were determined to be 37.69 ± 2.21%, 84.01 ± 5.55%, 83.82 ± 5.23%, and 83.11 ± 5.85% for LNP@BC-1, LNP@BC-2, LNP@BC-3, and LNP@BC-4, respectively, with AL, AL-OA, AL-OGL, and AL-SAN-OGL serving as the wall materials under optimized preparation conditions. The antioxidant properties and UV-absorbing capacity of the four lignins were characterized, demonstrating their efficacy in enhancing the oxygen and photostability of ß-carotene. Following 6 h of UV irradiation, LNP@BC-4 exhibited a retention rate of 83.03 ± 2.85% for ß-carotene, while storage under light-protected conditions at 25 °C for 7 days retained 73.33 ± 7.62% of ß-carotene. Furthermore, the encapsulated ß-carotene demonstrated enhanced thermal and storage stability. In vitro release experiments revealed superior stability of LNPs@BC in simulated gastric fluid (SGF), with ß-carotene retention exceeding 77% in both LNP@BC-3 and LNP@BC-4. LNP@BC-4 exhibited the highest bioaccessibility in simulated intestinal fluid (SIF) at 46.96 ± 0.80%, that LNP@BC-1 only achieved 10.87 ± 0.90%. The enzymatic responsiveness of AL-OGL and AL-SAN-OGL was confirmed. Moreover, LNPs@BC exhibited no cytotoxicity toward L929 cells and demonstrated excellent hemocompatibility. In summary, this study introduces a novel enzyme-responsive modified lignin that has promising applications in the fields of food, biomedicine, and animal feed.


Assuntos
Lignina , Lipase , Nanopartículas , beta Caroteno , Lignina/química , Nanopartículas/química , beta Caroteno/química , Lipase/química , Lipase/metabolismo , Solubilidade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Animais , Camundongos , Portadores de Fármacos/química
4.
Environ Sci Technol ; 58(25): 11016-11026, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38743591

RESUMO

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO32- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.


Assuntos
Ferro , Ferro/metabolismo , Shewanella/metabolismo , Minerais/metabolismo , Minerais/química , Oxirredução , Bactérias/metabolismo , Carbonatos , Compostos Férricos
6.
Appl Environ Microbiol ; 89(11): e0107223, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37902391

RESUMO

IMPORTANCE: The hyperarid Dalangtan Playa in the western Qaidam Basin, northwestern China, is a unique terrestrial analog of Mars. Despite the polyextreme environments of this area, habitats below translucent rocks capable of environmental buffering could serve as refuges for microbial life. In this study, the hybrid assembly of Illumina short reads and Nanopore long reads recovered high-quality and high-continuity genomes, allowing for high-accuracy analysis and a deeper understanding of extremophiles in the sheltered soils of the Dalangtan Playa. Our findings reveal self-supporting and metabolically versatile sheltered soil communities adapted to a hyperarid and hypersaline playa, which provides implications for the search for life signals on Mars.


Assuntos
Microbiota , Solo , China , Microbiologia do Solo , Clima Desértico
7.
Environ Microbiol ; 24(2): 938-950, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876543

RESUMO

Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.


Assuntos
Gammaproteobacteria , Magnetossomos , Baías , Óxido Ferroso-Férrico/análise , Gammaproteobacteria/genética , Magnetossomos/química , Magnetossomos/genética , Filogenia
8.
Environ Microbiol ; 24(11): 5019-5038, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35726890

RESUMO

Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3 and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single-cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments.


Assuntos
Desulfovibrio , Magnetossomos , RNA Ribossômico 16S/genética , DNA Ribossômico/genética , Sulfatos/análise , Filogenia , Óxido Ferroso-Férrico/análise , Hibridização in Situ Fluorescente , Magnetossomos/genética , Magnetossomos/química , Lagos/microbiologia , Microscopia Eletrônica , Desulfovibrio/genética
9.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35409372

RESUMO

Iron oxide nanoparticles have attracted a great deal of research interest in recent years for magnetic hyperthermia therapy owing to their biocompatibility and superior thermal conversion efficiency. Magnetoferritin is a type of biomimetic superparamagnetic iron oxide nanoparticle in a ferritin cage with good monodispersity, biocompatibility, and natural hydrophilicity. However, the magnetic hyperthermic efficiency of this kind of nanoparticle is limited by the small size of the mineral core as well as its low synthesis temperature. Here, we synthesized a novel magnetoferritin particle by using a recombinant ferritin from the hyperthermophilic archaeon Pyrococcus furiosus as a template with high iron atom loading of 9517 under a designated temperature of 90 °C. Compared with the magnetoferritins synthesized at 45 and 65 °C, the one synthesized at 90 °C displays a larger average magnetite and/or maghemite core size of 10.3 nm. This yields an increased saturation magnetization of up to 49.6 emu g-1 and an enhanced specific absorption rate (SAR) of 805.3 W g-1 in an alternating magnetic field of 485.7 kHz and 49 kA m-1. The maximum intrinsic loss power (ILP) value is 1.36 nHm2 kg-1. These results provide new insights into the biomimetic synthesis of magnetoferritins with enhanced hyperthermic efficiency and demonstrate the potential application of magnetoferritin in the magnetic hyperthermia of tumors.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Apoferritinas , Ferritinas , Humanos , Hipertermia , Ferro/metabolismo , Campos Magnéticos , Óxidos , Temperatura
10.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408982

RESUMO

Previous studies have found that hypomagnetic field (HMF) exposure impairs cognition behaviors in animals; however, the underlying neural mechanisms of cognitive dysfunction are unclear. The hippocampus plays important roles in magnetoreception, memory, and spatial navigation in mammals. Therefore, the hippocampus may be the key region in the brain to reveal its neural mechanisms. We recently reported that long-term HMF exposure impairs adult hippocampal neurogenesis and cognition through reducing endogenous reactive oxygen species (ROS) levels in adult neural stem cells that are confined in the subgranular zone (SGZ) of the hippocampus. In addition to adult neural stem cells, the redox state of other cells in the hippocampus is also an important factor affecting the functions of the hippocampus. However, it is unclear whether and how long-term HMF exposure affects ROS levels in the entire hippocampus (i.e., the dentate gyrus (DG) and ammonia horn (CA) regions). Here, we demonstrate that male C57BL/6J mice exposed to 8-week HMF exhibit cognitive impairments. We then found that the ROS levels of the hippocampus were significantly higher in these HMF-exposed mice than in the geomagnetic field (GMF) group. PCR array analysis revealed that the elevated ROS levels were due to HMF-regulating genes that maintain the redox balance in vivo, such as Nox4, Gpx3. Since high levels of ROS may cause hippocampal oxidative stress, we suggest that this is another reason why HMF exposure induces cognitive impairment, besides the hippocampal neurogenesis impairments. Our study further demonstrates that GMF plays an important role in maintaining hippocampal function by regulating the appropriate endogenous ROS levels.


Assuntos
Disfunção Cognitiva , Fator de Maturação da Glia , Animais , Cognição , Disfunção Cognitiva/etiologia , Hipocampo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Espécies Reativas de Oxigênio
11.
Environ Microbiol ; 23(2): 1115-1129, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985765

RESUMO

Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/metabolismo , Óxido Ferroso-Férrico/análise , Filogenia , Alphaproteobacteria/citologia , Alphaproteobacteria/genética , Biomineralização , Óxido Ferroso-Férrico/metabolismo , Sedimentos Geológicos/microbiologia , Magnetossomos/química , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Especificidade da Espécie
12.
Appl Environ Microbiol ; 87(23): e0155621, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34756060

RESUMO

Magnetotactic bacteria (MTB) are prokaryotes that form intracellular magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals with tailored sizes, often in chain configurations. Such magnetic particles are each surrounded by a lipid bilayer membrane, called a magnetosome, and provide a model system for studying the formation and function of specialized internal structures in prokaryotes. Using fluorescence-coupled scanning electron microscopy, we identified a novel magnetotactic spirillum, XQGS-1, from freshwater Xingqinggong Lake, Xi'an City, Shaanxi Province, China. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain XQGS-1 represents a novel genus of the Alphaproteobacteria class in the Proteobacteria phylum. Transmission electron microscopy analyses reveal that strain XQGS-1 forms on average 17 ± 3 magnetite magnetosome particles with an ideal truncated octahedral morphology, with an average length and width of 88.3 ± 11.7 nm and 83.3 ± 11.0 nm, respectively. They are tightly organized into a single chain along the cell long axis close to the concave side of the cell. Intrachain magnetic interactions likely result in these large equidimensional magnetite crystals behaving as magnetically stable single-domain particles that enable bacterial magnetotaxis. Combined structural and chemical analyses demonstrate that XQGS-1 cells also biomineralize intracellular amorphous calcium phosphate (2 to 3 granules per cell; 90.5- ± 19.3-nm average size) and weakly crystalline calcium carbonate (2 to 3 granules per cell; 100.4- ± 21.4-nm average size) in addition to magnetite. Our results expand the taxonomic diversity of MTB and provide evidence for intracellular calcium phosphate biomineralization in MTB. IMPORTANCE Biomineralization is a widespread process in eukaryotes that form shells, teeth, or bones. It also occurs commonly in prokaryotes, resulting in more than 60 known minerals formed by different bacteria under wide-ranging conditions. Among them, magnetotactic bacteria (MTB) are remarkable because they might represent the earliest organisms that biomineralize intracellular magnetic iron minerals (i.e., magnetite [Fe3O4] or greigite [Fe3S4]). Here, we report a novel magnetotactic spirillum (XQGS-1) that is phylogenetically affiliated with the Alphaproteobacteria class. In addition to magnetite crystals, XQGS-1 cells form intracellular submicrometer calcium carbonate and calcium phosphate granules. This finding supports the view that MTB are also an important microbial group for intracellular calcium carbonate and calcium phosphate biomineralization.


Assuntos
Alphaproteobacteria/classificação , Cálcio , Óxido Ferroso-Férrico , Lagos/microbiologia , Filogenia , Alphaproteobacteria/isolamento & purificação , Carbonato de Cálcio , Fosfatos de Cálcio , China , RNA Ribossômico 16S/genética
13.
Proc Natl Acad Sci U S A ; 115(36): 8913-8918, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126998

RESUMO

Polarity reversals of the geomagnetic field have occurred through billions of years of Earth history and were first revealed in the early 20th century. Almost a century later, details of transitional field behavior during geomagnetic reversals and excursions remain poorly known. Here, we present a multidecadally resolved geomagnetic excursion record from a radioisotopically dated Chinese stalagmite at 107-91 thousand years before present with age precision of several decades. The duration of geomagnetic directional oscillations ranged from several centuries at 106-103 thousand years before present to millennia at 98-92 thousand years before present, with one abrupt reversal transition occurring in one to two centuries when the field was weakest. These features indicate prolonged geodynamo instability. Repeated asymmetrical interhemispheric polarity drifts associated with weak dipole fields likely originated in Earth's deep interior. If such rapid polarity changes occurred in future, they could severely affect satellites and human society.

14.
Nanotechnology ; 31(48): 485709, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931463

RESUMO

Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg-1 body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.


Assuntos
Apoferritinas/análise , Corantes Fluorescentes/análise , Ferro/análise , Nanopartículas/análise , Imagem Óptica/métodos , Óxidos/análise , Animais , Apoferritinas/genética , Apoferritinas/toxicidade , Apoferritinas/ultraestrutura , Corantes Fluorescentes/toxicidade , Expressão Gênica , Humanos , Ferro/toxicidade , Nanopartículas/ultraestrutura , Óxidos/toxicidade , Ratos Sprague-Dawley , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/ultraestrutura , Saccharomycetales/genética
15.
Environ Sci Technol ; 54(7): 4121-4130, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129607

RESUMO

Magnetite (Fe3O4) is an environmentally ubiquitous mixed-valent iron (Fe) mineral, which can form via biotic or abiotic transformation of Fe(III) (oxyhydr)oxides such as ferrihydrite (Fh). It is currently unclear whether environmentally relevant biogenic Fh from Fe(II)-oxidizing bacteria, containing cell-derived organic matter, can transform to magnetite. We compared abiotic and biotic transformation: (1) abiogenic Fh (aFh); (2) abiogenic Fh coprecipitated with humic acids (aFh-HA); (3) biogenic Fh produced by phototrophic Fe(II)-oxidizer Rhodobacter ferrooxidans SW2 (bFh); and (4) biogenic Fh treated with bleach to remove biogenic organic matter (bFh-bleach). Abiotic or biotic transformation of Fh was promoted by Feaq2+ or Fe(III)-reducing bacteria. Feaq2+-catalyzed abiotic reaction with aFh and bFh-bleach led to complete transformation to magnetite. In contrast, aFh-HA only partially (68%) transformed to magnetite, and bFh (17%) transformed to goethite. We hypothesize that microbial biomass stabilized bFh against reaction with Feaq2+. All four Fh substrates were transformed into magnetite during biotic reduction, suggesting that Fh remains bioavailable even when associated with microbial biomass. Additionally, there were poorly ordered magnetic components detected in the biogenic end products for aFh and aFh-HA. Nevertheless, abiotic transformation was much faster than biotic transformation, implying that initial Feaq2+ concentration, passivation of Fh, and/or sequestration of Fe(II) by bacterial cells and associated biomass play major roles in the rate of magnetite formation from Fh. These results improve our understanding of factors influencing secondary mineralization of Fh in the environment.


Assuntos
Compostos Férricos , Substâncias Húmicas , Biomassa , Óxido Ferroso-Férrico , Minerais , Oxirredução
16.
Proc Natl Acad Sci U S A ; 114(50): 13120-13125, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29187534

RESUMO

Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records-in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy.

17.
Proc Natl Acad Sci U S A ; 114(1): 39-44, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27980031

RESUMO

Variations of the Earth's geomagnetic field during the Holocene are important for understanding centennial to millennial-scale processes of the Earth's deep interior and have enormous potential implications for chronological correlations (e.g., comparisons between different sedimentary recording sequences, archaeomagnetic dating). Here, we present 21 robust archaeointensity data points from eastern China spanning the past ∼6 kyr. These results add significantly to the published data both regionally and globally. Taking together, we establish an archaeointensity reference curve for Eastern Asia, which can be used for archaeomagnetic dating in this region. Virtual axial dipole moments (VADMs) of the data range from a Holocene-wide low of ∼27 to "spike" values of ∼166 ZAm2 (Z: 1021). The results, in conjunction with our recently published data, confirm the existence of a decrease in paleointensity (DIP) in China around ∼2200 BCE. These low intensities are the lowest ever found for the Holocene and have not been reported outside of China. We also report a spike intensity of 165.8 ± 6.0 ZAm2 at ∼1300 BCE (±300 y), which is either a prelude to or the same event (within age uncertainties) as spikes first reported in the Levant.

18.
Proc Natl Acad Sci U S A ; 114(9): 2171-2176, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193877

RESUMO

Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Genoma Bacteriano , Magnetossomos/genética , Filogenia , Proteobactérias/genética , Teorema de Bayes , Expressão Gênica , Campos Magnéticos , Magnetossomos/química , Proteobactérias/classificação , Proteobactérias/metabolismo , Resposta Táctica
19.
BMC Genomics ; 20(1): 407, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117953

RESUMO

BACKGROUND: Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS: We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION: Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.


Assuntos
Evolução Biológica , Genoma Bacteriano , Magnetossomos/genética , Rhodospirillaceae/genética , Proteínas de Bactérias/genética , Genômica , Luz , Magnetossomos/efeitos da radiação , Filogenia , Rhodospirillaceae/efeitos da radiação
20.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053584

RESUMO

Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that are able to biomineralize intracellular, magnetic chains of magnetite or greigite nanocrystals called magnetosomes. Simultaneous characterization of MTB phylogeny and biomineralization is crucial but challenging because most MTB are extremely difficult to culture. We identify a large rod, bean-like MTB (tentatively named WYHR-1) from freshwater sediments of Weiyang Lake, Xi'an, China, using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Phylogenetic analysis of 16S rRNA gene sequences indicates that WYHR-1 is a novel genus from the Deltaproteobacteria class. Transmission electron microscope observations reveal that WYHR-1 cells contain tens of magnetite magnetosomes that are organized into a single chain bundle along the cell long axis. Mature WYHR-1 magnetosomes are bullet-shaped, straight, and elongated along the [001] direction, with a large flat end terminated by a {100} face at the base and a conical top. This crystal morphology is distinctively different from bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum. This indicates that WYHR-1 may have a different crystal growth process and mechanism from other species, which results from species-specific magnetosome biomineralization in MTB.IMPORTANCE Magnetotactic bacteria (MTB) represent a model system for understanding biomineralization and are also studied intensively in biogeomagnetic and paleomagnetic research. However, many uncultured MTB strains have not been identified phylogenetically or investigated structurally at the single-cell level, which limits comprehensive understanding of MTB diversity and their role in biomineralization. We have identified a novel MTB strain, WYHR-1, from a freshwater lake using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Our analyses further indicate that strain WYHR-1 represents a novel genus from the Deltaproteobacteria class. In contrast to bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum, WYHR-1 magnetosomes are bullet-shaped, straight, and highly elongated along the [001] direction, are terminated by a large {100} face at their base, and have a conical top. Our findings imply that, consistent with phylogenetic diversity of MTB, bullet-shaped magnetosomes have diverse crystal habits and growth patterns.


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Magnetossomos/ultraestrutura , Filogenia , China , Deltaproteobacteria/genética , Deltaproteobacteria/ultraestrutura , Óxido Ferroso-Férrico , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA