Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847421

RESUMO

Nitrogen oxides (NOx) play an important role for atmospheric chemistry and radiative forcing. However, NOx emissions from the vast northern circumpolar permafrost regions have not been studied in situ due to limitations of measurement techniques. Our goals were to validate the offline analytical technique, and based on this, to widely quantify in situ NOx emissions from peatlands in the southern Eurasian permafrost region. To this end, we conducted a comparison of online and offline flux measurements in 2018 and 2019 using the synthetic air flushing, steady-state opaque chamber method. With differences in annual average and cumulative fluxes less than 0.1 µg N m-2 h-1 and 0.01 kg N ha-1 year-1, the online and offline fluxes were in good agreement, demonstrating the feasibility of conducting offline measurements in remote regions without power supply. The flux measurements over 2 years showed obvious NOx emissions of 0.05-0.14 and 0.13-0.30 kg N ha-1 year-1 in the hollow and hummock microtopography of permafrost peatlands, respectively. The rapid expansion of alder (Alnus sibirica) in the peatlands induced by permafrost degradation significantly increased soil mineral N contents and NOx emissions depending on the age of alder (0.64-1.74 and 1.44-2.20 kg N ha-1 year-1 from the alder forests with tree ages of 1-10 years and 11-20 years, respectively). Alder expansion also intensively altered the thermal state of permafrost including the sharp increases of soil temperatures during the non-growing season from October to April and active layer thickness. This study provides the first in situ evidences of NOx emissions from the northern circumpolar permafrost regions and uncovers the well-documented expansion of alders can substantially stimulate NOx emissions and thus, significantly affect air quality, radiative forcing, and ecosystem productivity in the pristine regions.


Assuntos
Óxidos de Nitrogênio , Pergelissolo , Solo , Solo/química , Óxidos de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
2.
Environ Sci Technol ; 58(2): 1177-1186, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170897

RESUMO

Ammonia (NH3) volatilization from agricultural lands is a main source of atmospheric reduced nitrogen species (NHx). Accurately quantifying its contribution to regional atmospheric NHx deposition is critical for controlling regional air nitrogen pollution. The stable nitrogen isotope composition (expressed by δ15N) is a promising indicator to trace atmospheric NHx sources, presupposing a reliable nitrogen isotopic signature of NH3 emission sources. To obtain more specific seasonal δ15N values of soil NH3 volatilization for reliable regional seasonal NH3 source partitioning, we utilized an active dynamic sampling technique to measure the δ15N-NH3 values volatilized from maize cropping land in northeast China. These values varied from -38.0 to -0.2‰, with a significantly lower rate-weighted value observed in the early period (May-June, -30.5 ± 6.7‰) as compared with the late period (July-October, -8.5 ± 4.3‰). Seasonal δ15N-NH3 variations were related to the main NH3 production pathway, degree of soil ammonium consumption, and soil environment. Bayesian isotope mixing model analysis revealed that without considering the seasonal δ15N variation in soil-volatilized NH3 could result in an overestimate by up to absolute 38% for agricultural volatile NH3 to regional atmospheric bulk ammonium deposition during July-October, further demonstrating that it is essential to distinguish seasonal δ15N profile of agricultural volatile NH3 in regional source apportionment.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Amônia/análise , Isótopos de Nitrogênio/análise , Estações do Ano , Ecossistema , Teorema de Bayes , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos de Amônio/análise , Nitrogênio/análise , China , Solo , Produtos Agrícolas
3.
Environ Pollut ; 355: 124200, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788991

RESUMO

Lake Erhai is a potentially phosphorus (P)-limited lake and its water quality may have been affected by atmospheric P deposition. However, there have been few studies on atmospheric P deposition in this lake. In this study, we established five wet deposition monitoring sites and two dry deposition monitoring sites around Lake Erhai to quantify the wet and dry deposition of total phosphorus (TP), including dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP) and particulate phosphorus (PP) from July 2022 to June 2023. Wet deposition fluxes of P species were collected by automatic rainfall collection instrument, and dry deposition fluxes were estimated using airborne concentration measurements and inferential models. The results reveal that among the different P components, DOP had the highest contribution (50%) to wet TP deposition (average all sites 12.7 ± 0.7 mg P m2/yr), followed by PP (40%) and DIP (10%). Similarly, DOP (51%) was the major contributor to dry TP deposition (average two sites 2.4 ± 0.9 mg P m2/yr), followed by DIP (35%) and PP (14%). Wet deposition dominated the annual total TP deposition (wet plus dry), accounting for approximately 83%. The key seasons for dry deposition were spring and autumn, which accounted for 64% of the annual total dry TP deposition. In comparison, wet deposition was significantly higher in the summer, accounting for 73% of the annual total wet TP deposition. The results of the potential source contribution function and concentration-weighted trajectories analysis indicate that local source emission and long-range transport from surrounding cities jointly exerted a substantial influence on aerosol P concentrations, particularly in the eastern and northwestern regions of the lake. These findings provide a comprehensive understanding of the different P components in atmospheric deposition, which is beneficial for developing effective strategies to manage the P cycle in Lake Erhai.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Lagos , Fósforo , Fósforo/análise , Lagos/química , China , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Atmosfera/química , Poluentes Químicos da Água/análise , Estações do Ano , Chuva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA