Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 88(14): 7843-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789787

RESUMO

Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Assuntos
Adaptação Biológica , Recombinação Homóloga , Vírus do Listrado do Milho/genética , Viabilidade Microbiana , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Vírus do Listrado do Milho/fisiologia , Doenças das Plantas/virologia , Análise de Sequência de DNA , Zea mays/virologia
2.
Nutrients ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674831

RESUMO

An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Withania , Humanos , Extratos Vegetais/farmacologia , Células CACO-2 , Withania/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Metanol/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Caspase 9/metabolismo , Caspase 9/genética , Antineoplásicos Fitogênicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Raízes de Plantas/química , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Caules de Planta/química
3.
BMC Evol Biol ; 12: 252, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23268599

RESUMO

BACKGROUND: Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). RESULTS: Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we observed similar strand specific mutation biases arising predominantly from imbalances in the complementary mutations G → T: C → A. CONCLUSIONS: While our results suggest that recombination does not strongly influence mutation rates in MSV, they indicate that high geminivirus mutation rates are at least partially attributable to increased susceptibility of all geminivirus genomes to oxidative damage while in a single stranded state.


Assuntos
Evolução Molecular , Vírus do Listrado do Milho/genética , Taxa de Mutação , Recombinação Genética , Adaptação Fisiológica/genética , Sequência de Bases , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral/genética , Genótipo , Dados de Sequência Molecular , Mutação , Doenças das Plantas/virologia , Seleção Genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Zea mays/virologia
4.
Arch Virol ; 157(8): 1617-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543634

RESUMO

Despite extensive sampling, only one virus belonging to the genus Mastrevirus of the family Geminiviridae, maize streak virus (MSV), has until now been detected in maize with maize streak disease (MSD) symptoms. Here, we report for the first time a second, highly divergent, mastrevirus isolated from two maize plants displaying characteristic MSD-like symptoms, sampled on the South-west Indian Ocean Island, La Réunion. The two isolates shared <57 % genome-wide identity with all other known mastreviruses. We propose calling the new species Maize streak Réunion virus.


Assuntos
Geminiviridae , Doenças das Plantas/virologia , Zea mays/virologia , Sequência de Bases , DNA Viral/genética , Geminiviridae/classificação , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Reunião
5.
Virus Res ; 232: 69-76, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28192163

RESUMO

Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A1, has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A1. We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A1.


Assuntos
DNA Viral/genética , Genoma Viral , Vírus do Listrado do Milho/genética , Filogenia , Doenças das Plantas/virologia , Zea mays/virologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Vírus do Listrado do Milho/classificação , Filogeografia , Uganda
6.
Virus Res ; 238: 171-178, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687345

RESUMO

Maize streak virus (MSV), an important pathogen of maize in Africa, is the most extensively studied member of the Mastrevirus genus in the family Geminiviridae. Comparatively little is known about other monocot-infecting African mastreviruses, most of which infect uncultivated grasses. Here we determine the complete sequences of 134 full African mastrevirus genomes from predominantly uncultivated Poaceae species. Based on established taxonomic guidelines for the genus Mastrevirus, these genomes could be classified as belonging to the species Maize streak virus, Eragrostis minor streak virus, Maize streak Reunion virus, Panicum streak virus, Sugarcane streak Reunion virus and Sugarcane streak virus. Together with all other publicly available African monocot-infecting mastreviruses, the 134 new isolates extend the known geographical distributions of many of these species, including MSV which we found infecting Digitaria sp. on the island of Grand Canaria: the first definitive discovery of any African monocot-infecting mastreviruses north-west of the Saharan desert. These new isolates also extend the known host ranges of both African mastrevirus species and the strains within these. Most notable was the discovery of MSV-C isolates infecting maize which suggests that this MSV strain, which had previously only ever been found infecting uncultivated species, may be in the process of becoming adapted to this important staple crop.


Assuntos
Geminiviridae/classificação , Geminiviridae/fisiologia , Variação Genética , Especificidade de Hospedeiro , Filogeografia , Doenças das Plantas/virologia , Poaceae/virologia , África , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Ilhas , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
7.
Virus Res ; 166(1-2): 13-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406325

RESUMO

Monocotyledonous and dicotyledonous plant infecting mastreviruses threaten various agricultural systems throughout Africa, Eurasia and Australasia. In Australia three distinct mastrevirus species are known to infect dicotyledonous hosts such as chickpea, bean and tobacco. Amongst 34 new "dicot-infecting" mastrevirus full genome sequences obtained from these hosts we discovered one new species, four new strains, and various variants of previously described mastrevirus species. Besides providing additional support for the hypothesis that evolutionary processes operating during dicot-infecting mastrevirus evolution (such as patterns of pervasive homologous and non-homologous recombination, and strong purifying selection acting on all genes) have mostly mirrored those found in their monocot-infecting counterparts, we find that the Australian dicot-infecting viruses display patterns of phylogeographic clustering reminiscent of those displayed by monocot infecting mastrevirus species such as Panicum streak virus and Maize streak virus.


Assuntos
Geminiviridae/genética , Geminiviridae/isolamento & purificação , Austrália , Análise por Conglomerados , Evolução Molecular , Geminiviridae/classificação , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Plantas/virologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA