Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 13(11): 7135-7152, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36875872

RESUMO

With the popularity of 3D-printing technology, poly(lactic acid) (PLA) has become a very good option for layer by layer printing as it is easy to handle, environment friendly, has low costs and most importantly, it is highly adaptable to different materials including carbon, nylon and some other fibres. PLA is an aliphatic poly-ester that is 100% bio-based and is bio-degradable as well. It is one of the rare bio-polymers to compete with traditional polymers in terms of performance and environmental impact. However, PLA is sensitive to water and susceptible to degradation under natural conditions of ultra-violet rays (UV), humidity, fumes, etc. There are many reports on the bio-degradation and photo-degradation of PLA which deal with the accelerated weathering test. However, the accelerated weathering test instruments lack the ability to correlate the stabilities maintained by the test with the actual occurrences during natural exposure. Thus, an attempt has been made in the present work to expose the 3D-printed PLA samples to actual atmospheric conditions of Aurangabad city (M.S.) in India. The degradation of PLA after the exposure is studied and a mechanism is elucidated. Additionally, the tensile properties of the PLA samples are evaluated to correlate the extent of degradation and the material performance. It was found that though the performance of PLA deteriorates with the exposure time, the combination of in-fill pattern and volume plays an important role on the tensile properties and the extent of degradation. It is concluded herein that with natural exposure, the degradation of PLA occurs in two stages, supported by a side reaction. Thus, this study offers a new perspective towards the life of components in actual application by exposing PLA to the natural atmosphere and evaluating its strength and structure.

2.
Indian J Med Res ; 135: 346-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22561621

RESUMO

BACKGROUND & OBJECTIVES: The SXT element, also known as 'constin' (conjugable, self transmissible, integrating element) is an integrating conjugative element (ICE) in Vibrio cholerae discovered in the chromosome of epidemic V. cholerae O139 strain MO10 (SXT MO10 ) which arose in late 1992 in Chennai, India. SXT related ICEs have become widespread and currently, most if not all Asian V. cholerae clinical isolates contain SXT related ICEs. The present study attempts to determine the presence of SXT Int gene in V. cholerae recovered between 2005 to 2007 in a tertiary care hospital, demonstrate its conjugal nature and also detect co-presence and co-transfer of plasmids in representative isolates. METHODS: This prospective study was done on 116 V. cholerae isolates [114- O1 (107 ogawa and 7 inaba) and 2 - Non O1 Non O139 V. cholerae] from watery stools between 2005 to 2007 recovered from equal number of patients. PCR was carried out using SXT Int specific primers that produced a 592 bp internal fragment of SXT element, and rifampicin resistant strain of E.coli K-12 was used as recipient in conjugation experiments to study transfer of SXT, as also co-transfer of resistance to tetracycline, erythromycin, and nalidixic acid. Antibiotic susceptibility was performed against various antibiotics. RESULTS: Of the 116 isolates, 110 (94.8%) were positive for SXT element by PCR. It was demonstrated in 94.7 per cent of the O1, and 100 per cent of non O1 non O139 V. cholerae. All 2005 isolates, 25 per cent of 2006 isolates and 96.6 per cent of 2007 isolates were positive for SXT. Thirty two drug resistance patterns were observed and the 2007 isolates showed resistance to as many as eight antibiotics. The resistance of SXT positive isolates was higher than those of SXT negative and the typical drug resistance pattern corresponding to SXT ET and SXT MO10 was shown by only one V. cholerae O1 isolate. Successful conjugal transfer of SXT was seen in 31 (88.6%) of the 35 isolates studied without any co-transfer while, presence of plasmids was observed in two of the 31 donor V. cholerae studied. INTERPRETATION & CONCLUSIONS: The demonstration of SXT element and its successful horizontal transfer in V. cholerae isolates studied emphasizes the need for its detection to monitor antibiotic resistance and dissemination in V. cholerae.


Assuntos
Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Vibrio cholerae/isolamento & purificação , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Humanos , Sequências Repetitivas Dispersas , Estudos Prospectivos , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA