Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Behav Immun ; 107: 87-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202167

RESUMO

Emerging evidence suggests a detrimental impact of COVID-19 illness on the continued hippocampal neurogenesis in adults. In contrast, the existing literature supports an enhancing effect of COVID-19 vaccination on adult hippocampal neurogenesis. Vaccines against respiratory infections, including influenza, have been shown to enhance hippocampal neurogenesis in adult-age animals. We propose that a similar benefit may happen in COVID-19 vaccinated adults. The vaccine-induced enhancement of the hippocampal neurogenesis in adults thus may protect against age-related cognitive decline and mental disorders. It alsohints at an added mental health benefit of the COVID-19 vaccination programs in adults.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle
2.
J Med Virol ; 94(4): 1300-1314, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34811761

RESUMO

Young age, female sex, absence of comorbidities, and prior infection or vaccination are known epidemiological barriers for contracting the new infection and/or increased disease severity. Demographic trends from the recent coronavirus disease 2019 waves, which are believed to be driven by newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, indicate that the aforementioned epidemiological barriers are being breached and a larger number of younger and healthy individuals are developing severe disease. The new SARS-CoV-2 variants have key mutations that can induce significant changes in the virus-host interactions. Recent studies report that, some of these mutations, singly or in a group, enhance key mechanisms, such as binding of the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor in the host-cells, increase the glycosylation of spike protein at the antigenic sites, and enhance the proteolytic cleavage of the spike protein, thus leading to improved host-cell entry and the replication of the virus. The putative changes in the virus-host interactions imparted by the mutations in the RBD sequence can potentially be the reason behind the breach of the observed epidemiological barriers. Susceptibility for contracting SARS-CoV-2 infection and the disease outcomes are known to be influenced by host-cell expressions of ACE2 and other proteases. The new variants can act more efficiently, and even with the lesser availability of the viral entry-receptor and the associated proteases, can have more efficient host-cell entry and greater replication resulting in high viral loads and prolonged viral shedding, widespread tissue-injury, and severe inflammation leading to increased transmissibility and lethality. Furthermore, the accumulating evidence shows that multiple new variants have reduced neutralization by both, natural and vaccine-acquired antibodies, indicating that repeated and vaccine breakthrough infections may arise as serious health concerns in the ongoing pandemic.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , COVID-19/transmissão , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus , Replicação Viral
3.
Zoo Biol ; 40(1): 79-85, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33034084

RESUMO

The article is presenting a bioinformatics based method predicting susceptibility for SARS-CoV-2 infection in domestic and wildlife animals. Recently, there were reports of cats and ferrets, dogs, minks, golden hamster, rhesus monkeys, tigers, and lions testing for SARS-CoV-2 RNA which indicated for the possible interspecies viral transmission. Our method successfully predicted the susceptibility of these animals for contracting SARS-CoV-2 infection. This method can be used as a screening tool for guiding viral RNA testing for domestic and wildlife animals at risk of getting COVID-19. We provide a list of the animals at risk of developing COVID-19 based on the susceptibility score.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Animais Domésticos , Animais Selvagens , COVID-19/veterinária , Predisposição Genética para Doença , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/virologia , Regulação Enzimológica da Expressão Gênica , Humanos , RNA Viral/análise , Especificidade da Espécie
4.
Proteins ; 87(2): 99-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30007053

RESUMO

Ribosome inactivating protein (RIP) catalyzes the cleavage of glycosidic bond formed between adenine and ribose sugar of ribosomal RNA to inactivate ribosomes. Previous structural studies have shown that RNA bases, adenine, guanine, and cytosine tend to bind to RIP in the substrate binding site. However, the mode of binding of uracil with RIP was not yet known. Here, we report crystal structures of two complexes of type 1 RIP from Momordica balsamina (MbRIP1) with base, uracil and nucleoside, uridine. The binding studies of MbRIP1 with uracil and uridine as estimated using fluorescence spectroscopy showed that the equilibrium dissociation constants (KD ) were 1.2 × 10-6 M and 1.4 × 10-7 M respectively. The corresponding values obtained using surface plasmon resonance (SPR) were found to be 1.4 × 10-6 M and 1.1 × 10-7 M, respectively. Structures of the complexes of MbRIP1 with uracil (Structure-1) and uridine (Structure-2) were determined at 1.70 and 1.98 Å resolutions respectively. Structure-1 showed that uracil bound to MbRIP1 at the substrate binding site but its mode of binding was significantly different from those of adenine, guanine and cytosine. However, the mode of binding of uridine was found to be similar to those of cytidine. As a result of binding of uracil to MbRIP1 at the substrate binding site, three water molecules were expelled while eight water molecules were expelled when uridine bound to MbRIP1.


Assuntos
Momordica/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Uracila/química , Uridina/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Ligação Proteica , Conformação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Ribossomos/química , Ribossomos/metabolismo , Ressonância de Plasmônio de Superfície , Uracila/metabolismo , Uracila/farmacologia , Uridina/metabolismo , Uridina/farmacologia
5.
Proteins ; 84(5): 591-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26850578

RESUMO

The bilobal lactoferrin is an approximately 76 kDa glycoprotein. It sequesters two Fe(3+) ions together with two CO(3)(2-) ions. The C-terminal half (residues, Tyr342-Arg689, C-lobe) of bovine lactoferrin (BLF) (residues Ala1-Arg689) was prepared by limited proteolysis using trypsin. Both C-lobe and intact BLF were saturated to 100%. Both of them retained up to nearly 85% of iron at pH 6.5. At pH 5.0, C-lobe retained 75% of iron whereas intact protein could retain only slightly more than 60%. At pH 4.0 both contained 25% iron and at pH 2.0 they were left with iron concentration of only 10%. The structure of iron saturated C-lobe was determined at 2.79 Å resolution and refined to R(cryst) and R(free) factors of 0.205 and 0.273, respectively. The structure contains two crystallographically independent molecules, A and B. They were found to have identical structures with an r.m.s. shift of 0.5 Å for their C(α) atoms. A high solvent content of 66% was observed in the crystals. The average value of an overall B-factor was 68.0 Å(2). The distance of 2.9 Å observed for the coordination bond between Fe(3+) ion and N(e2) of His595 appeared to be considerably longer than the normally observed values of 1.9-2.2 Å. This indicated that the coordination bond involving His595 may be absent. Other coordination distances were observed in the range of 2.1-2.3 Å. Based on the present structure of iron saturated C-lobe, it may be stated that His595 is the first residue to dissociate from ferric ion when the pH is lowered.


Assuntos
Ferro/química , Ferro/metabolismo , Lactoferrina/química , Lactoferrina/metabolismo , Animais , Bovinos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Tripsina/metabolismo
6.
Int J Biol Macromol ; 263(Pt 1): 130219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367785

RESUMO

Dysfunctional mitophagy contributes to Parkinson's disease (PD) by affecting dopamine-producing neurons. Mutations in parkin and pink1 genes, linked to familial PD, impede the removal of damaged mitochondria. Previous studies suggested Rab11's involvement in mitophagy alongside Parkin and Pink1. Additionally, mitochondria-endoplasmic reticulum contact sites (MERCS) regulate cellular functions, including mitochondrial quality control and calcium regulation. Our study explored whether activating mitophagy triggers the unfolded protein response and ER stress pathway in SH-SY5Y human cells. We induced a PD-like state by exposing undifferentiated SH-SY5Y cells to rotenone, an established PD-inducing agent. This led to reduced Rab11 and PERK- expression while increasing ATP5a, a mitochondrial marker, when Rab11 was overexpressed. Our findings suggest that enhancing endosomal trafficking can mitigate ER stress by regulating mitochondria, rescuing cells from apoptosis. Furthermore, we assessed the therapeutic potential of Rab11, both alone and in combination with L-Dopa, in a Drosophila PD model. In summary, our research underscores the role of mitophagy dysfunction in PD pathogenesis, highlighting Rab11's importance in alleviating ER stress and preserving mitochondrial function. It also provides insights into potential PD management strategies, including the synergistic use of Rab11 and L-Dopa.


Assuntos
Proteínas de Drosophila , Neuroblastoma , Doença de Parkinson , Animais , Humanos , Levodopa , Rotenona/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Drosophila/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
7.
JMIR Bioinform Biotech ; 4: e42700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688013

RESUMO

Background: Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective: The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods: We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results: Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions: In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.

8.
JMIR Bioinform Biotech ; 3(1): e36860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193192

RESUMO

Background: Since the start of the COVID-19 pandemic, health policymakers globally have been attempting to predict an impending wave of COVID-19. India experienced a devastating second wave of COVID-19 in the late first week of May 2021. We retrospectively analyzed the viral genomic sequences and epidemiological data reflecting the emergence and spread of the second wave of COVID-19 in India to construct a prediction model. Objective: We aimed to develop a bioinformatics tool that can predict an impending COVID-19 wave. Methods: We analyzed the time series distribution of genomic sequence data for SARS-CoV-2 and correlated it with epidemiological data for new cases and deaths for the corresponding period of the second wave. In addition, we analyzed the phylodynamics of circulating SARS-CoV-2 variants in the Indian population during the study period. Results: Our prediction analysis showed that the first signs of the arrival of the second wave could be seen by the end of January 2021, about 2 months before its peak in May 2021. By the end of March 2021, it was distinct. B.1.617 lineage variants powered the wave, most notably B.1.617.2 (Delta variant). Conclusions: Based on the observations of this study, we propose that genomic surveillance of SARS-CoV-2 variants, complemented with epidemiological data, can be a promising tool to predict impending COVID-19 waves.

9.
Front Immunol ; 12: 693938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790191

RESUMO

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais , Corpo Humano , Humanos , Pulmão/imunologia , Pulmão/virologia , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
10.
Med Hypotheses ; 144: 110271, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33254575

RESUMO

COVID-19 is caused by a new strain of coronavirus called SARS-coronavirus-2 (SARS-CoV-2), which is a positive sense single strand RNA virus. In humans, it binds to angiotensin converting enzyme 2 (ACE2) with the help a structural protein on its surface called the S-spike. Further, cleavage of the viral spike protein (S) by the proteases like transmembrane serine protease 2 (TMPRSS2) or Cathepsin L (CTSL) is essential to effectuate host cell membrane fusion and virus infectivity. COVID-19 poses intriguing issues with imperative relevance to clinicians. The pathogenesis of GI symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 are of particular relevance because they cannot be sufficiently explained from the existing knowledge of the viral diseases. Tissue specific variations of SARS-CoV-2 cell entry related receptors expression in healthy individuals can help in understanding the pathophysiological basis the aforementioned collection of symptoms. ACE2 mediated dysregulation of sodium dependent glucose transporter (SGLT1 or SLC5A1) in the intestinal epithelium also links it to the pathogenesis of diabetes mellitus which can be a possible reason for the associated mortality in COVID-19 patients with diabetes. High expression of ACE2 in mucosal cells of the intestine and GB make these organs potential sites for the virus entry and replication. Continued replication of the virus at these ACE2 enriched sites may be a basis for the disease recurrence reported in some, thought to be cured, patients. Based on the human tissue specific distribution of SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 and other supportive evidence from the literature, we hypothesize that SARS-CoV-2 host cell entry receptor-ACE2 based mechanism in GI tissue may be involved in COVID-19 (i) in the pathogenesis of digestive symptoms, (ii) in increased diabetic complications, (iii) in disease recurrence.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/fisiopatologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/mortalidade , Trato Gastrointestinal/virologia , Serina Endopeptidases/metabolismo , COVID-19/metabolismo , Gastroenteropatias/complicações , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Incidência , Mucosa Intestinal/virologia , Modelos Teóricos , Ligação Proteica , Proteoma , Recidiva , SARS-CoV-2 , Transcriptoma , Resultado do Tratamento
11.
FEBS J ; 281(12): 2871-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24798798

RESUMO

Bovine lactoferrin, a 76-kDa glycoprotein (Ala1-Arg689) consists of two similar N- and C-terminal molecular halves with the ability to bind two Fe(3+) ions. The N-terminal half, designated as the N-lobe (Ala1-Arg341) and the C-terminal half designated as the C-lobe (Tyr342-Arg689) have similar iron-binding properties, but the resistant C-lobe prolongs the physiological role of bovine lactoferrin in the digestive tract. Here, we report the crystal structure of true C-lobe, which was produced by limited proteolysis of bovine lactoferrin using trypsin. In the first proteolysis step, two fragments of 21 kDa (Glu86-Lys282) and 45 kDa (Ser283-Arg689) were generated because two lysine residues, Lys85 and Lys282, in the structure of iron-saturated bovine lactoferrin were fully exposed. The 45-kDa fragment was further digested at the newly exposed side chain of Arg341, generating a 38-kDa perfect C-lobe (Tyr342-Arg689). By contrast, the apo-lactoferrin was cut by trypsin only at Arg341, which was exposed in the structure of apo-lactoferrin, whereas the other two sites with Lys85 and Lys282 are inaccessible. The purified iron-saturated C-lobe was crystallized at pH 4.0. The structure was determined by the molecular replacement method using coordinates of the C-terminal half (Arg342-Arg689) of intact camel apo-lactoferrin. The structure determination revealed that the iron atom was absent and the iron-binding cleft was found in a wide-open conformation, whereas in the previously determined structure of iron-saturated C-lobe of bovine lactoferrin, the iron atom was present and the iron-binding site was in the closed confirmation.


Assuntos
Mucosa Intestinal/metabolismo , Lactoferrina/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Lactoferrina/biossíntese , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA