Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sep Sci ; 38(7): 1213-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25677831

RESUMO

A SBA-15/polyaniline para-toluenesulfonic acid nanocomposite supported micro-solid-phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting-out effect, extraction and desorption time, and stirring rate. A Plackett-Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 µL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08-0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r(2) = 0.997-0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.


Assuntos
Compostos de Anilina/química , Cromatografia Líquida de Alta Pressão/métodos , Cosméticos , Membranas Artificiais , Nanocompostos , Parabenos/análise , Microextração em Fase Sólida/métodos , Águas Residuárias/química , Microscopia Eletrônica de Transmissão , Porosidade , Propriedades de Superfície
2.
Biophys Rep ; 7(3): 173-184, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37287489

RESUMO

Antimicrobial peptides (AMPs) are integral components of the innate immune defence system of all complex organisms including plants, insects, and mammals. They have wide range of antibacterial, antifungal, antiviral, and even anticancer activities, therefore AMPs are attractive candidates for developing novel therapeutic approaches. Cationic α-helical membrane disrupting peptides are perhaps the most widely studied subclass of AMPs due to their common fundamental characteristics that allow for detailed structure-function analysis and therefore offer a promising solution to the threat of multidrug resistant strains of bacteria. The majority of the studies of AMP activity focused on the biological and biophysical aspects of membrane disruption; the understanding of the molecular mechanism of action from the physicochemical point of view forms a relatively small subfield. This review will provide an overview of these works, focusing on the empirical and thermodynamic models of AMP action.

3.
Biophys Chem ; 262: 106381, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32361097

RESUMO

The mechanism of action of membrane disrupting antimicrobial peptides (AMPs) and the basis of their specificity and selectivity to pathogens are often studied by using biomimetic model membranes. It is often assumed that all model membrane morphologies, e.g. liposomes, supported bilayers, tethered bilayers etc. are equivalent. In this work the validity of this assumption was assessed. Melittin was used as the reference AMP as it can disrupt both bacterial and mammalian-mimetic membranes. Quartz crystal microbalance (QCM) viscoelastic fingerprints show characteristic differences between the three model morphologies: single bilayer membranes, multilamellar membrane stacks and unilamellar liposomes. In the second and third case, initial trends show material removal instead of material addition as in the single bilayer case, consistent with dissolution of some bilayers, and bursting liposomes, respectively. The latter is accompanied by a characteristic drop in the dissipation signal as the liposomes collapse. The results also highlight an important limitation of the QCM method, the need for a well established reference system for qualitative analysis of the viscoelastic fingerprints, and thus the importance of using the right model system, i.e. single bilayer membrane, for studies of the mechanism of action of AMPs.

4.
Sci Rep ; 9(1): 10841, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346251

RESUMO

Melittin is one of the most studied α-helical cationic membrane disrupting peptides. It is the main component of bee venom, however it is considered an antimicrobial peptide for its ability to kill bacteria. Melittin is believed to act by opening large toroidal pores in the plasma membrane of the targeted cells/bacteria, although this is questioned by some authors. Little is known, however, about the molecular mechanism leading to this activity. In this study the mechanism of action of melittin was studied by dye leakage and quartz crystal microbalance fingerprinting analysis in biomimetic model membranes. The results revealed the existence of multiple stages in the membrane disrupting action with characteristic differences between different membrane types. In bacterial-mimetic (charged) lipid mixtures the viscoelastic fingerprints suggest a surface-acting mechanism, whereas in mammalian-mimetic (neutral) membranes melittin appears to penetrate the bilayer already at low concentrations. In domain-forming mixed membranes melittin shows a preference for the domain containing predominantly zwitterionic lipids. The results confirm membrane poration but are inconsistent with the insertion-to-toroidal pore pathway. Therefore hypotheses of the two membrane disrupting pathways were developed, describing the membrane disruption as either surface tension modulation leading to toroidal pore formation, or linear aggregation leading to fissure formation in the membrane.


Assuntos
Venenos de Abelha , Bicamadas Lipídicas/metabolismo , Meliteno/metabolismo , Substâncias Viscoelásticas
5.
ACS Appl Mater Interfaces ; 9(12): 10383-10397, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263055

RESUMO

In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol1200/2400 modified PHMB (APEG1200/2400-PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG1200/2400-PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG2400-PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG2400-PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG2400-PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA