Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Biol ; 17(1): 4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646909

RESUMO

BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.


Assuntos
Colesterol/sangue , Hipercolesterolemia/genética , Fígado/metabolismo , Pró-Proteína Convertase 9/genética , Animais , Modelos Animais de Doenças , Edição de Genes , Genoma , Humanos , Hipercolesterolemia/metabolismo , Camundongos , Camundongos Transgênicos
2.
BMC Biol ; 16(1): 150, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593278

RESUMO

BACKGROUND: Base Editing is a precise genome editing method that uses a deaminase-Cas9 fusion protein to mutate cytidine to thymidine in target DNA in situ without the generation of a double-strand break. However, the efficient enrichment of genetically modified cells using this technique is limited by the ability to detect such events. RESULTS: We have developed a Base Editing FLuorescent Activity REporter (BE-FLARE), which allows for the enrichment of cells that have undergone editing of target loci based on a fluorescence shift from BFP to GFP. We used BE-FLARE to evaluate the editing efficiency of APOBEC3A and APOBEC3B family members as alternatives deaminase domains to the rat APOBEC1 domain used in base editor 3 (BE3). We identified human APOBEC3A and APOBEC3B as highly efficient cytidine deaminases for base editing applications with unique properties. CONCLUSIONS: Using BE-FLARE to report on the efficiency and precision of editing events, we outline workflows for the accelerated generation of genetically engineered cell models and the discovery of alternative base editors.


Assuntos
Desaminase APOBEC-1/genética , Citidina Desaminase/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Antígenos de Histocompatibilidade Menor/genética , Proteínas/genética , Animais , Humanos , Ratos
3.
Hum Mol Genet ; 21(11): 2485-96, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22367967

RESUMO

The developmental role of the T-box transcription factor Tbx1 is exquisitely dosage-sensitive. In this study, we performed a microarray-based transcriptome analysis of E9.5 embryo tissues across a previously generated Tbx1 mouse allelic series. This analysis identified several genes whose expression was affected by Tbx1 dosage. Interestingly, we found that the expression of the gene encoding the cardiogenic transcription factor Mef2c was negatively correlated to Tbx1 dosage. In vivo data revealed Mef2c up-regulation in the second heart field (SHF) of Tbx1 null mutant embryos compared with wild-type littermates at E9.5. Conversely, Mef2c expression was decreased in the SHF and in somites of Tbx1 gain-of-function mutants. These results are consistent with the described role of Tbx1 in suppressing cardiac progenitor cell differentiation and indicate also a negative effect of Tbx1 on Mef2c during skeletal muscle differentiation. We show that Tbx1 occupies conserved regulatory regions of the Mef2c locus, suggesting a direct effect on Mef2c transcription. However, we also show that Tbx1 interferes with the Gata4→ Mef2c regulatory pathway. Overall, our study uncovered a target of Tbx1 with critical developmental roles, so highlighting the power of the dosage gradient approach that we used.


Assuntos
Fatores de Regulação Miogênica/genética , Proteínas com Domínio T/genética , Alelos , Animais , Diferenciação Celular , Genótipo , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Fatores de Regulação Miogênica/metabolismo , Fenótipo , Proteínas com Domínio T/metabolismo , Transcriptoma , Transfecção , Regulação para Cima
5.
Nat Commun ; 12(1): 497, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479216

RESUMO

Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Engenharia Genética/métodos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Mutação , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
6.
Dis Model Mech ; 11(9)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166330

RESUMO

The TBX1 gene is haploinsufficient in 22q11.2 deletion syndrome (22q11.2DS), and genetic evidence from human patients and mouse models points to a major role of this gene in the pathogenesis of this syndrome. Tbx1 can activate and repress transcription, and previous work has shown that one of its functions is to negatively modulate cardiomyocyte differentiation. Tbx1 occupies the anterior heart field (AHF) enhancer of the Mef2c gene, which encodes a key cardiac differentiation transcription factor. Here, we show that increased dosage of Tbx1 correlates with downregulation of Mef2c expression and reduced acetylation of its AHF enhancer in cultured mouse myoblasts. Consistently, 22q11.2DS-derived and in vitro-differentiated human induced pluripotent stem cells (hiPSCs) expressed higher levels of MEF2C and showed increased AHF acetylation, compared with hiPSCs from a healthy donor. Most importantly, we show that in mouse embryos, loss of Tbx1 enhances the expression of the Mef2c-AHF-Cre transgene in a specific region of the splanchnic mesoderm, and in a dosage-dependent manner, providing an in vivo correlate of our cell culture data. These results indicate that Tbx1 regulates the Mef2c AHF enhancer by inducing histone deacetylation.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Histonas/metabolismo , Proteínas com Domínio T/metabolismo , Acetilação , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Síndrome de DiGeorge/patologia , Embrião de Mamíferos/metabolismo , Feminino , Fator de Transcrição GATA4/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição MEF2/genética , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo
7.
PLoS One ; 13(10): e0205719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332462

RESUMO

AIMS: Dilated cardiomyopathy (DCM), a myocardial disorder that can result in progressive heart failure and arrhythmias, is defined by ventricular chamber enlargement and dilatation, and systolic dysfunction. Despite extensive research, the pathological mechanisms of DCM are unclear mainly due to numerous mutations in different gene families resulting in the same outcome-decreased ventricular function. Titin (TTN)-a giant protein, expressed in cardiac and skeletal muscles, is an important part of the sarcomere, and thus TTN mutations are the most common cause of adult DCM. To decipher the basis for the cardiac pathology in titin-mutated patients, we investigated the hypothesis that induced Pluripotent Stem Cell (iPSC)-derived cardiomyocytes (iPSC-CM) generated from patients, recapitulate the disease phenotype. The hypothesis was tested by 3 Aims: (1) Investigate key features of the excitation-contraction-coupling machinery; (2) Investigate the responsiveness to positive inotropic interventions; (3) Investigate the proteome profile of the AuP cardiomyocytes using mass-spectrometry (MS). METHODS AND RESULTS: iPSC were generated from the patients' skin fibroblasts. The major findings were: (1) Sarcomeric organization analysis in mutated iPSC-CM showed defects in assembly and maintenance of sarcomeric structure. (2) Mutated iPSC-CM exhibited diminished inotropic and lusitropic responses to ß-adrenergic stimulation with isoproterenol, increased [Ca2+]out and angiotensin-II. Additionally, mutated iPSC-CM displayed prolonged recovery in response to caffeine. These findings may result from defective or lack of interactions of the sarcomeric components with titin through its kinase domain which is absent in the mutated cells. CONCLUSIONS: These findings show that the mutated cardiomyocytes from DCM patients recapitulate abnormalities of the inherited cardiomyopathies, expressed as blunted inotropic response.


Assuntos
Cardiomiopatia Dilatada/genética , Diferenciação Celular/genética , Conectina/genética , Contração Miocárdica/genética , Miócitos Cardíacos/patologia , Adulto , Idoso , Cardiomiopatia Dilatada/patologia , Acoplamento Excitação-Contração/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Isoproterenol/farmacologia , Masculino , Mutação , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteoma
8.
Cardiovasc Res ; 113(5): 531-541, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158429

RESUMO

AIMS: Calmodulin (CaM) is a small protein, encoded by three genes (CALM1-3), exerting multiple Ca2+-dependent modulatory roles. A mutation (F142L) affecting only one of the six CALM alleles is associated with long QT syndrome (LQTS) characterized by recurrent cardiac arrests. This phenotypic severity is unexpected from the predicted allelic balance. In this work, the effects of heterozygous CALM1-F142L have been investigated in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from a LQTS patient carrying the F142L mutation, i.e. in the context of native allelic ratio and potential gene modifiers. METHODS AND RESULTS: Skin fibroblasts of the mutation carrier and two unrelated healthy subjects (controls) were reprogrammed to hiPSC and differentiated into hiPSC-CMs. Scanty IK1 expression, an hiPSC-CMs feature potentially biasing repolarization, was corrected by addition of simulated IK1 (Dynamic-Clamp). Abnormalities in repolarization rate-dependency (in single cells and cell aggregates), membrane currents and intracellular Ca2+ dynamics were evaluated as putative arrhythmogenic factors. CALM1-F142L prolonged repolarization, altered its rate-dependency and its response to isoproterenol. This was associated with severe impairment of Ca2+-dependent inactivation (CDI) of ICaL, resulting in augmented inward current during the plateau phase. As a result, the repolarization of mutant cells failed to adapt to high pacing rates, a finding well reproduced by using a recent hiPSC-CM action potential model. The mutation failed to affect IKs and INaL and changed If only marginally. Intracellular Ca2+ dynamics and Ca2+ store stability were not significantly modified. Mutation-induced repolarization abnormalities were reversed by verapamil. CONCLUSION: The main functional derangement in CALM1-F142L was prolonged repolarization with altered rate-dependency and sensitivity to ß-adrenergic stimulation. Impaired CDI of ICaL underlined the electrical abnormality, which was sensitive to ICaL blockade. High mutation penetrance was confirmed in the presence of the native genotype, implying strong dominance of effects.


Assuntos
Sinalização do Cálcio , Calmodulina/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Mutação , Agonistas Adrenérgicos beta/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Estimulação Cardíaca Artificial , Estudos de Casos e Controles , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Fibroblastos/efeitos dos fármacos , Marcadores Genéticos , Predisposição Genética para Doença , Frequência Cardíaca , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cinética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Potenciais da Membrana , Fenótipo , Pele/citologia , Transfecção
10.
EMBO Mol Med ; 7(5): 562-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759365

RESUMO

Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Conectina/metabolismo , Éxons , Mutação da Fase de Leitura , Regulação da Expressão Gênica/efeitos dos fármacos , Oligonucleotídeos Antissenso/metabolismo , Animais , Cardiomiopatia Dilatada/terapia , Células Cultivadas , Conectina/genética , Técnicas Citológicas , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA