Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2777-2780, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262208

RESUMO

Recently, perovskite light-emitting diodes (PeLEDs) have exhibited outstanding performance in next-generation high-definition display applications. However, compared with green and red PeLEDs, the development of efficient and stable blue PeLEDs to meet the requirement for a wide color gamut has been a challenge. Herein, we vacuum thermally deposited a film of the lead-free rare earth halide Rb3CeI6, which shows deep blue emission with peaks at 427 nm and 468 nm. Due to the parity-allowed 5d-4f transition of Ce(III), the excited-state lifetime is as short as 22.3 ns (427 nm) and 25 ns (468 nm), respectively. The photoluminescence quantum yield (PLQY) is optimized to 51% by regulating the nucleation and growth of Rb3CeI6 grains. In a prototype rare earth light-emitting diode (ReLED) device, a thin insulating Al2O3 layer (5 nm) is inserted between the electron transport layer (ETL) and the emitting layer (EML, Rb3CeI6) to balance the carriers and reduce the dark current. The device shows a maximum luminance and EQE of 98 cd m-2 and 0.67%, respectively, and the electroluminescence (EL) spectrum maintains stability with changes in the operating voltage. In addition, the corresponding CIE coordinate is (0.15, 0.06), which closely matches the Rec. 2020 standard (0.131, 0.046).

2.
Nat Commun ; 15(1): 1769, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413618

RESUMO

X-ray detection is widely used in various applications. However, to meet the demand for high image quality and high accuracy diagnosis, the raw data increases and imposes challenges for conventional X-ray detection hardware regarding data transmission and power consumption. To tackle these issues, we present a scheme of in-X-ray-detector computing based on CsPbBr3 single-crystal detector with convenient polarity reconfigurability, good linear dynamic range, and robust stability. The detector features a stable trap-free device structure and achieves a high linear dynamic range of 106 dB. As a result, the detector could achieve edge extraction imaging with a data compression ratio of ~50%, and could also be programmed and trained to perform pattern recognition tasks with a high accuracy of 100%. Our research shows that in-X-ray-detector computing can be used in flexible and complex scenarios, making it a promising platform for intelligent X-ray imaging.

3.
Front Optoelectron ; 17(1): 32, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325114

RESUMO

Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 103 µCGy-1⋅cm-2. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 µCGy-1air⋅cm-2, the requirements on dark current density ranges from 10 to 100 nA⋅cm-2 and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅cm-2.

4.
Innovation (Camb) ; 5(4): 100654, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39021527

RESUMO

X-ray detection is crucial across various sectors, but traditional techniques face challenges such as inefficient data transmission, redundant sensing, high power consumption, and complexity. The innovative idea of a retinomorphic X-ray detector shows great potential. However, its implementation has been hindered by the absence of active layers capable of both detecting X-rays and serving as memory storage. In response to this critical gap, our study integrates hybrid perovskite with hydrion-conductive organic cations to develop a groundbreaking retinomorphic X-ray detector. This novel device stands at the nexus of technological innovation, utilizing X-ray detection, memory, and preprocessing capabilities within a single hardware platform. The core mechanism underlying this innovation lies in the transport of electrons and holes within the metal halide octahedral frameworks, enabling precise X-ray detection. Concurrently, the hydrion movement through organic cations endows the device with short-term resistive memory, facilitating rapid data processing and retrieval. Notably, our retinomorphic X-ray detector boasts an array of formidable features, including reconfigurable short-term memory, a linear response curve, and an extended retention time. In practical terms, this translates into the efficient capture of motion projections with minimal redundant data, achieving a compression ratio of 18.06% and an impressive recognition accuracy of up to 98.6%. In essence, our prototype represents a paradigm shift in X-ray detection technology. With its transformative capabilities, this retinomorphic hardware is poised to revolutionize the existing X-ray detection landscape.

5.
Nat Commun ; 15(1): 6240, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048553

RESUMO

Rare earth ions with d-f transitions (Ce3+, Eu2+) have emerged as promising candidates for electroluminescence applications due to their abundant emission spectra, high light conversion efficiency, and excellent stability. However, directly injecting charge into 4f orbitals remains a significant challenge, resulting in unsatisfied external quantum efficiency and high operating voltage in rare earth light-emitting diodes. Herein, we propose a scheme to solve the difficulty by utilizing the energy transfer process. X-ray photoelectron spectroscopy and transient absorption spectra suggest that the Cs3CeI6 luminescence process is primarily driven by the energy transfer from the I2-based self-trapped exciton to the Ce-based Frenkel exciton. Furthermore, energy transfer efficiency is largely improved by enhancing the spectra overlap between the self-trapped exciton emission and the Ce-based Frenkel exciton excitation. When implemented as an active layer in light-emitting diodes, they show the maximum brightness and external quantum efficiency of 1073 cd m-2 and 7.9%, respectively.

6.
Light Sci Appl ; 11(1): 105, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449122

RESUMO

Multi-energy X-ray detection is sought after for a wide range of applications including medical imaging, security checking and industrial flaw inspection. Perovskite X-ray detectors are superior in terms of high sensitivity and low detection limit, which lays a foundation for multi-energy discrimination. However, the extended capability of the perovskite detector for multi-energy X-ray detection is challenging and has never been reported. Herein we report the design of vertical matrix perovskite X-ray detectors for multi-energy detection, based on the attenuation behavior of X-ray within the detector and machine learning algorithm. This platform is independent of the complex X-ray source components that constrain the energy discrimination capability. We show that the incident X-ray spectra could be accurately reconstructed from the conversion matrix and measured photocurrent response. Moreover, the detector could produce a set of images containing the density-graded information under single exposure, and locate the concealed position for all low-, medium- and high-density substances. Our findings suggest a new generation of X-ray detectors with features of multi-energy discrimination, density differentiation, and contrast-enhanced imaging.

7.
Front Optoelectron ; 15(1): 43, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36637550

RESUMO

Metal halide perovskites (MHPs) have demonstrated excellent performances in detection of X-rays and gamma-rays. Most studies focus on improving the sensitivity of single-pixel MHP detectors. However, little work pays attention to the dark current, which is crucial for the back-end circuit integration. Herein, the requirement of dark current is quantitatively evaluated as low as 10-9 A/cm2 for X-ray imagers integrated on pixel circuits. Moreover, through the semiconductor device analysis and simulation, we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current (JT) and the generation-recombination current (Jg-r). The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects. This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.

8.
Adv Mater ; 34(17): e2110252, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165950

RESUMO

Controlling the carrier polarity and concentration underlies most electronic and optoelectronic devices. However, for the intensively studied lead halide perovskites, the doping tunability is inefficient. In this work, taking CsPbBr3 as an example, it is revealed that the coexistence of metallic Pb or CsBr3 /Br2 , rather than the precursor ratio, can provide Pb-rich/Br-poor or Br-rich/Pb-poor chemical conditions, enabling the tunability of electrical properties from weak n-type, intrinsic, to moderate p-type. Experimentally, under Br2 -exposure treatment, a shift of the Fermi level as large as 1.00 eV is achieved, which is one of the highest value among all kinds of doping methods. The X-ray detector based on the intrinsic CsPbBr3 exhibits excellent performance, with a negligible dark-current drift of 7.1 × 10-4 nA cm-1 s-1 V-1 , a low detection limit of 103.6 nGyair s-1 , and a high sensitivity of 9085 µC Gyair -1 cm-2 . This work provides a critical understanding and guidance for tuning the electrical properties of lead halide perovskites, which establishes good foundations for achieving intrinsic perovskite semiconductors and also constructing potential homojunction devices.

9.
Fundam Res ; 2(1): 108-113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933912

RESUMO

The metal halide perovskites exhibit excellent performance as the direct X-ray detectors owing to their strong absorption capability, long carrier lifetime and diffusion length, radiation ruggedness, etc. For imaging applications, the ionic migration of perovskites and charge sharing effect between the adjacent pixels have a significantly negative impact on the spatial resolution. Herein, for the first time, the porous anodic aluminum oxides (AAO) have been used as a template to grow the CsPbBr2I thick film for the direct X-ray detection. Benefiting from the oxygen passivation effect, the activation energy for ionic migration has been observed to increase to 0.701 eV, whereas the dark current drift (1.01 × 10-5 nA cm-1s-1V-1) is one to two orders of magnitude lower than the other lead halide perovskite single crystals and films. Moreover, the AAO insulating wall effectively blocks the charge diffusion effect across a pixel pitch of 10 µm. Overall, the findings reported in this study open a new route for reducing the ionic migration and pixel crosstalk, thus, bringing the perovskite X-ray detectors close to the practical applications.

10.
Front Optoelectron ; 14(4): 473-481, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36637767

RESUMO

X-ray detection is of great significance in biomedical, nondestructive, and scientific research. Lead halide perovskites have recently emerged as one of the most promising materials for direct X-ray detection. However, the lead toxicity remains a worrisome concern for further commercial application. Great efforts have been made to search for lead-free perovskites with similar optoelectronic properties. Here, we present a lead-free oxide double perovskite material Ba2AgIO6 for X-ray detection. The lead-free, all-inorganic nature, as well as the high density of Ba2AgIO6, promises excellent prospects in X-ray applications. By employing the hydrothermal method, we successfully synthesized highly crystalline Ba2AgIO6 powder with pure phase. Furthermore, we prepared Ba2AgIO6 wafers through isostatic pressure and built X-ray detectors with Au/Ba2AgIO6 wafer/Au photo-conductive structure. The as-prepared X-ray detectors showed a sensitivity of 18.9 µC/(Gyair·cm2) at 5 V/mm, similar to commercial α-Se detectors showcasing their advantages for X-ray detection.

11.
Front Optoelectron ; 14(3): 341-351, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36637730

RESUMO

Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution, high sensitivity, and simple device configuration. However, their potential is largely limited by the imperfections of traditional materials, such as the low crystallization temperature of α-Se and the low atomic numbers of α-Si and α-Se. Here, we report the Sb2Se3 X-ray thin-film detector with a p-n junction structure, which exhibited a sensitivity of 106.3 µC/(Gyair·cm2) and response time of < 2.5 ms. This decent performance and the various advantages of Sb2Se3, such as the average atomic number of 40.8 and µτ product (µ is the mobility, and τ is the carrier lifetime) of 1.29 × 10-5 cm2/V, indicate its potential for application in X-ray detection.

12.
Nat Commun ; 12(1): 4751, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362915

RESUMO

With rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 µm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA