RESUMO
Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known "oxidative stress modulators", such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators-namely, polyphenols and melatonin-in the treatment of breast cancer will be discussed.
Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melatonina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , HumanosRESUMO
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.
Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Epigênese Genética , Genes Supressores de Tumor , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Terapia de Alvo Molecular/métodos , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo , Transdução de SinaisRESUMO
Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.
Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Cicatrização/fisiologia , Animais , Apoptose , Autofagia , Biomarcadores , Movimento Celular , Proliferação de Células , Citoproteção/genética , Regulação da Expressão Gênica , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismoRESUMO
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Infarto do Miocárdio/metabolismo , Substâncias Protetoras/química , Traumatismo por Reperfusão/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Biomarcadores/metabolismo , Desferroxamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Estresse Oxidativo/fisiologia , Intervenção Coronária Percutânea , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Volume Sistólico/fisiologia , Tocoferóis/química , Tocoferóis/farmacologia , Função Ventricular Esquerda/fisiologiaRESUMO
Flavonols are the most widely distributed class of dietary flavonoids with a wide range of pharmacological properties due to their potent lipid peroxidation inhibition activity. The permeability and orientation of these compounds in lipid bilayers can provide an understanding of their antioxidant and lipid-peroxidation inhibition activity based on their structures at the molecular level. For this purpose, we studied antioxidant activity and atomic-scale molecular dynamics simulations of 3-hydroxyflavone (fisetin), 5-hydroxyflavone (apigenin) and 3,5-hydroxyflavone (morin) in palmitoyloleylphosphatidylcholine (POPC) membrane models with 0 mol% and 40 mol% cholesterol concentration. In pure POPC bilayer with 0 mol% cholesterol concentration, the flavonols penetrated into bilayer with lowest free energy profiles, however, incorporation of 40% cholesterol concentration reduced the permeability of the flavonols. Higher cholesterol concentrations in the POPC lipid bilayer resulted in an increase of the bilayer thickness and corresponding decrease in the area per lipid which rationalizes the reduced partitioning of flavonols due to cholesterol. In the presence of cholesterol, the flavonols reside at the polar interfacial region of the lipid bilayer to form higher H-bonding interactions with cholesterol molecules in addition to water and lipid oxygens. Among all the selected flavonols, morin showed the highest affinity which was driven by the hydrophobic effect as also depicted by ITC (Isothermal titration calorimetry) experiments and thus, more efficient antioxidant in scavenging superoxide, nitric oxide radicals as well as lipid peroxyl radicals. Furthermore, our simulations also confirmed that the permeability of compounds is sensitive towards the cholesterol content in the membrane.
Assuntos
Antioxidantes/química , Membrana Celular/química , Flavonóis/química , Algoritmos , Antioxidantes/farmacologia , Calorimetria , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Flavonóis/farmacologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer's disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Assuntos
Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Assuntos
Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neovascularização Fisiológica/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Proteínas Tirosina Fosfatases/metabolismoRESUMO
Significance: The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) system is a master regulator of redox homeostasis and cell adaptation to a variety of exogenous and endogenous stressors. Accumulating evidence from the last decade indicates that the impairment of the redox balance leads to oxidative stress (OS), a common alteration occurring in many human acute and chronic inflammatory diseases, such as cancer, diabetes, neurodegeneration, and metabolic disorders, and aging. Recent Advances: Being located at the intersection of crucial signaling pathways, NRF2 can influence several cellular functions, which extend beyond the maintenance of the redox balance and include cellular metabolism, proteostasis, mitochondrial function and inflammation. For this reason, there is a growing interest in the pharmacologic manipulation of NRF2 for therapeutic purposes, which requires the accurate knowledge of the cell context and the specific time frame both of NRF2 activation and inhibition. This appears to be an important prerequisite and reflects the extreme complexity of the NRF2 signaling, characterized by an intrinsic dualism that mediates beneficial or detrimental effects even in the same biological process. Critical Issues: Of crucial importance will be to understand whether the NRF2 activity modulation might be exploited to exert beneficial outcomes in patients suffering from pathological conditions, in which the OS and the deregulation of inflammatory processes play a crucial role. Future Directions: In this review, we discuss the dual involvement of NRF2 in aging, neurodegeneration, metabolic diseases, long-COVID-19, and carcinogenesis and we present an overview of the most recent therapeutic modulators of NRF2, particularly emphasizing on those selected for clinical trials. Antioxid. Redox Signal. 40, 636-662.
Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Síndrome de COVID-19 Pós-AgudaRESUMO
Obesity and metabolic syndrome result from excess calorie intake and genetic predisposition and are mechanistically linked to type II diabetes and accelerated body aging; abnormal nutrient and insulin signaling participate in this pathologic process, yet the underlying molecular mechanisms are incompletely understood. Mice lacking the p66 kDa isoform of the Shc adaptor molecule live longer and are leaner than wild-type animals, suggesting that this molecule may have a role in metabolic derangement and premature senescence by overnutrition. We found that p66 deficiency exerts a modest but significant protective effect on fat accumulation and premature death in lepOb/Ob mice, an established genetic model of obesity and insulin resistance; strikingly, however, p66 inactivation improved glucose tolerance in these animals, without affecting (hyper)insulinaemia and independent of body weight. Protection from insulin resistance was cell autonomous, because isolated p66KO preadipocytes were relatively resistant to insulin desensitization by free fatty acids in vitro. Biochemical studies revealed that p66shc promotes the signal-inhibitory phosphorylation of the major insulin transducer IRS-1, by bridging IRS-1 and the mTOR effector p70S6 kinase, a molecule previously linked to obesity-induced insulin resistance. Importantly, IRS-1 was strongly up-regulated in the adipose tissue of p66KO lepOb/Ob mice, confirming that effects of p66 on tissue responsiveness to insulin are largely mediated by this molecule. Taken together, these findings identify p66shc as a major mediator of insulin resistance by excess nutrients, and by extension, as a potential molecular target against the spreading epidemic of obesity and type II diabetes.
Assuntos
Resistência à Insulina/fisiologia , Leptina/metabolismo , Obesidade/fisiopatologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Intolerância à Glucose/genética , Intolerância à Glucose/fisiopatologia , Hiperinsulinismo/genética , Hiperinsulinismo/fisiopatologia , Hipoglicemiantes/farmacologia , Immunoblotting , Insulina/farmacologia , Leptina/genética , Longevidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de SrcRESUMO
The skin represents a physical barrier between the organism and the environment that has evolved to confer protection against biological, chemical, and physical insults. The inner layer, known as dermis, is constituted by connective tissue and different types of immune cells whereas the outer layer, the epidermis, is composed by different layers of keratinocytes and an abundant number of melanocytes, localized in the stratum basale of the epidermis. Oxidative stress is a common alteration of inflammatory skin disorders such as vitiligo, dermatitis, or psoriasis but can also play a causal role in skin carcinogenesis and tumor progression. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) has emerged as a crucial regulator of cell defense mechanisms activating complex transcriptional programs that facilitate reactive oxygen species detoxification, repair oxidative damage and prevent xenobiotic-induced toxicity. Accumulating evidence suggests that the keratinocytes, melanocytes, and other skin cell types express high levels of NRF2, which is known to play a pivotal role in the skin homeostasis, differentiation, and metabolism during normal and pathologic conditions. In the present review, we summarize the current evidence linking NRF2 to skin pathophysiology and we discuss some recent modulators of NRF2 activity that have shown a therapeutic efficacy in skin protection against tumor initiation and common inflammatory skin conditions such as vitiligo or psoriasis, with a particular emphasis on natural compounds.
Assuntos
Neoplasias , Psoríase , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/metabolismo , Vitiligo/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Psoríase/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias/metabolismoRESUMO
OBJECTIVES: Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS: In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS: Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Assuntos
MicroRNAs , Neoplasias , Peroxidação de Lipídeos , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
RESUMO
The NRF2-KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells' resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells' biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Assuntos
Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismoRESUMO
BACKGROUND: Bisphenol A (BPA) and perfluorooctanoic acid (PFOA) are synthetic compounds widely utilized in industrial activities devoted to the production of daily life plastic, metal products, and packaging from which they are able to migrate to food and water. Due to their persistence in the environment, living organisms are chronically exposed to these pollutants. BPA and PFOA have adverse effects on tissues and organs. The aim of this study was to identify the molecular targets and biochemical mechanisms involved in their toxicity. METHODS: HepG2 and HaCaT cells were treated with BPA or PFOA, and the trypan blue exclusion test and 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay were performed to define the conditions for subsequent investigations. We conducted quantitative PCR and western blot analysis to evaluate the expression of proteins involved in nitric oxide (NO) signaling. Cell-based assays were carried out to evaluate reactive oxygen species (ROS) production, nitrite/nitrate (NOx) accumulation, 3-nitrotyrosine (3-NT) formation, and mitochondrial membrane potential (MMP) determination in treated cells. RESULTS: HepG2 and HaCaT cells incubated for 24 h with subtoxic concentrations of BPA or PFOA (50 and 10 µM, respectively) exhibited altered mRNA and protein expression levels of NO synthase isoforms, manganese superoxide dismutase, and cytochrome c. Treatment with PFOA led to activation of inducible NO synthase (NOS), a marker of nitrosative stress, accompanied by the increased production of ROS, NOx, and 3-NT and alterations of the MMP compared to controls. CONCLUSIONS: The results of this study indicate the major involvement of the NO signaling axis in the persistent alteration of cell redox homeostasis and mitochondrial dysfunction induced by BPA and PFOA, highlighting the specific role of PFOA in NOS regulation and induction of nitro-oxidative stress.
Assuntos
Mitocôndrias , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Mitocôndrias/metabolismoRESUMO
Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.
Assuntos
Ácido Aspártico , Células Endoteliais , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Ácido Aspártico/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Biossíntese de Proteínas/fisiologia , Pirimidinas , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
RESUMO
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
RESUMO
Oxidative stress is a state of excess of prooxidative species relative to the antioxidant defenses (enzymatic and nonenzymatic) in a living organism. The consequence of this imbalance is damage of the major cellular macromolecules (carbohydrates, lipids, proteins, and DNA), which further leads to a gradual loss of tissue and organ function. It has been shown that oxidative stress plays an important role in the pathogenesis of many chronic diseases (cardiovascular, metabolic, and neurodegenerative diseases and cancer) and in the process of aging. Thus, many strategies to combat oxidative stress have been proposed and tested. In this context, food rich in antioxidants has received great attention. Pomegranate, berries, and walnuts have been recognized as "superfood" particularly for their cardioprotective effects. The common characteristic of these foods is the high content of ellagitannins. Since tannins are not bioavailable, they have been neglected in nutrition science and even considered antinutrients for a long time. However, this view has changed dramatically once it was recognized that ellagic acid, released from ellagitannins in the gastrointestinal system, is further metabolized by colonic microbiota to bioavailable compounds-known as urolithins. Thus, urolithins (3,4-benzocoumarin derivatives) have emerged as novel natural bioactive compounds and are now the focus of extensive investigations. So far, urolithins were shown to be powerful modulators of oxidative stress and agents with potential anti-inflammatory, antiproliferative, and antiaging properties. Furthermore, a few synthetic derivatives of urolithins were recognized as lead compounds for new drug development. Available data on urolithin synthesis, physicochemical and pharmacokinetic characteristics, biological activity, and safety will be presented in this review.
Assuntos
Cumarínicos/uso terapêutico , Ácido Elágico/metabolismo , Cumarínicos/farmacologia , Humanos , Estresse OxidativoRESUMO
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review.