Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 119: 693-708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677626

RESUMO

Newborns exposed to birth asphyxia transiently experience deficient blood flow and a lack of oxygen, potentially inducing hypoxic-ischaemic encephalopathy and subsequent neurological damage. Immunomodulatory components in plasma may dampen these responses. Using caesarean-delivered pigs as a model, we hypothesized that dietary plasma supplementation improves brain outcomes in pigs exposed to birth asphyxia. Mild birth asphyxia was induced by temporary occlusion of the umbilical cord prior to caesarean delivery. Motor development was assessed in asphyxiated (ASP) and control (CON) piglets using neonatal arousal, physical activity and gait test parameters before euthanasia on Day 4. The ASP pigs exhibited increased plasma lactate at birth, deficient motor skills and increased glial fibrillary acidic protein levels in CSF and astrogliosis in the putamen. The expression of genes related to oxidative stress, inflammation and synaptic functions was transiently altered in the motor cortex and caudate nucleus. The number of apoptotic cells among CTIP2-positive neurons in the motor cortex and striatal medium spiny neurons was increased, and maturation of preoligodendrocytes in the internal capsule was delayed. Plasma supplementation improved gait performance in the beam test, attenuated neuronal apoptosis and affected gene expression related to neuroinflammation, neurotransmission and antioxidants (motor cortex, caudate). We present a new clinically relevant animal model of moderate birth asphyxia inducing structural and functional brain damage. The components in plasma that support brain repair remain to be identified but may represent a therapeutic potential for infants and animals after birth asphyxia.


Assuntos
Animais Recém-Nascidos , Asfixia Neonatal , Encéfalo , Modelos Animais de Doenças , Animais , Suínos , Asfixia Neonatal/terapia , Encéfalo/metabolismo , Feminino , Estresse Oxidativo/fisiologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Asfixia/terapia , Gravidez , Córtex Motor/metabolismo
2.
Exp Physiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980930

RESUMO

Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets. The preterm group consisted of 19-day-old preterm (10 days early) piglets, treated with either IGF-1 or vehicle. Term controls consisted of groups of 9-day-old piglets (D9) and 19-day-old piglets (D19). Muscle samples were analysed by immunofluorescence to determine the cross-sectional area (CSA) of muscle fibres, fibre type composition, satellite cell content and central nuclei-containing fibres in the muscle. Tendon samples were analysed for CSA, collagen content and maturation, and vascularization. Gene expression of the tendon was measured by RT-qPCR. Across all endpoints, we found no significant effect of IGF-1 treatment on preterm piglets. Preterm piglets had smaller muscle fibre CSA compared to D9 and D19 control group. Satellite cell content was similar across all groups. For tendon, we found an effect of age on tendon CSA, and mRNA levels of COL1A1, tenomodulin and scleraxis. Immunoreactivity for elastin and CD31, and several markers of tendon maturation, were increased in D9 compared to the preterm piglets. Collagen content was similar across groups. IGF-1 treatment of preterm-born piglets does not influence the growth and maturation of skeletal muscle and tendon.

3.
Pediatr Res ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086951

RESUMO

BACKGROUND: Reduced insulin-like growth factor-1 (IGF-1) levels may contribute to impaired organ development in preterm infants. Using preterm pigs as a model, we hypothesized that IGF-1 supplementation improves health and gut development during the first three weeks of life. METHODS: First, clinical and organ endpoints were compared between artificially-reared, cesarean-delivered preterm pigs and vaginally-delivered, sow-reared term pigs at 5, 9 and 19 days. Next, preterm pigs were treated with recombinant human IGF-1 for 19 days (2.25 mg/kg/day, systemically). RESULTS: Relative to term pigs, preterm pigs had lower body weight, fat, bone contents, relative weights of liver and spleen and a longer and thinner intestine at 19 days. Preterm birth reduced intestinal villi heights and peptidase activities, but only at 5 and 9 days. In preterm pigs, IGF-1 reduced mortality primarily occurring from gastrointestinal complications and with a tendency towards salvaging smaller pigs. IGF-1 supplementation also increased spleen and kidney weights, small intestine length and maltase to lactase activity, reflecting gut maturation. CONCLUSION: Preterm birth affects body composition and gut maturation in the first 1-2 weeks, but differences are marginal thereafter. Supplemental IGF-1 may improve gut health in pigs and infants in the first few weeks after preterm birth. IMPACT: Insulin-like growth factor 1 (IGF-1) supplementation may improve gut health and development in prematurity, but whether the effects are sustained beyond the immediate postnatal period is unclear. In preterm pigs, the prematurity effects on IGF-1 and gut health deficiencies are most pronounced during the first week of life and diminishes thereafter. In preterm pigs, IGF-1 supplementation beyond the first week of life reduced mortality. The present study provides evidence of a sustained effect of IGF-1 supplementation on the gastrointestinal tract after the immediate postnatal period.

4.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495765

RESUMO

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Assuntos
Proliferação de Células/efeitos dos fármacos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Timosina/metabolismo , Timosina/farmacologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Osteoblastos/patologia , Resistência Física , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
Am J Physiol Gastrointest Liver Physiol ; 317(1): G67-G77, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091150

RESUMO

Prenatal inflammation may predispose to preterm birth and postnatal inflammatory disorders such as necrotizing enterocolitis (NEC). Bioactive milk ingredients may help to support gut maturation in such neonates, but mother's milk is often insufficient after preterm birth. We hypothesized that supplementation with bioactive ingredients from bovine milk [osteopontin (OPN), caseinoglycomacropeptide (CGMP), colostrum (COL)] supports gut, immunity, and NEC resistance in neonates born preterm after gram-negative infection before birth. Using preterm pigs as a model for preterm infants, fetal pigs were given intraamniotic injections of lipopolysaccharide (LPS; 1 mg/fetus) and delivered 3 days later (90% gestation). For 5 days, groups of LPS-exposed pigs were fed formula (FOR), bovine colostrum (COL), or formula enriched with OPN or CGMP. LPS induced intraamniotic inflammation and postnatal systemic inflammation but limited effects on postnatal gut parameters and NEC. Relative to FOR, COL feeding to LPS-exposed pigs showed less diarrhea, NEC severity, reduced gut IL-1ß and IL-8 levels, greater gut goblet cell density and digestive enzyme activities, and blood helper T-cell fraction. CGMP improved neonatal arousal and gut lactase activities and reduced LPS-induced IL-8 secretion in intestinal epithelial cells (IECs) in vitro. Finally, OPN tended to reduce diarrhea and stimulated IEC proliferation in vitro. No effects on villus morphology, circulating cytokines, or colonic microbiota were observed among groups. In conclusion, bioactive milk ingredients exerted only modest effects on gut and systemic immune parameters in preterm pigs exposed to prenatal inflammation. Short-term, prenatal exposure to inflammation may render the gut less sensitive to immune-modulatory milk effects. NEW & NOTEWORTHY Prenatal inflammation is a risk factor for preterm birth and postnatal complications including infections. However, from clinical studies, it is difficult to separate the effects of only prenatal inflammation from preterm birth. Using cesarean-delivered preterm pigs with prenatal inflammation, we documented some beneficial gut effects of bioactive milk diets relative to formula, but prenatal inflammation appeared to decrease the sensitivity of enteral feeding. Special treatments and diets may be required for this neonatal population.


Assuntos
Caseínas/administração & dosagem , Corioamnionite/dietoterapia , Enterocolite Necrosante/prevenção & controle , Alimentos Fortificados , Imunidade nas Mucosas , Fórmulas Infantis , Intestinos/imunologia , Osteopontina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Nascimento Prematuro , Animais , Animais Recém-Nascidos , Caseínas/imunologia , Linhagem Celular , Corioamnionite/induzido quimicamente , Corioamnionite/imunologia , Corioamnionite/metabolismo , Colostro/imunologia , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Recém-Nascido , Absorção Intestinal , Intestinos/microbiologia , Intestinos/patologia , Lipopolissacarídeos , Valor Nutritivo , Osteopontina/imunologia , Fragmentos de Peptídeos/imunologia , Permeabilidade , Gravidez , Sus scrofa
6.
J Neural Transm (Vienna) ; 126(11): 1493-1500, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501979

RESUMO

In the present study, we developed an in vitro model of Huntington disease (HD) by transfecting primary rat hippocampal neurons with plasmids coding for m-htt exon 1 with different number of CAG repeats (18, 50 and 115) and demonstrated the influence of the length of polyQ sequence on neurite elongation. We found that exogenously applied FGF2 significantly rescued the m-htt-induced loss of neurite outgrowth. Moreover, the Enreptin peptide, an FGFR1 and NCAM dual agonist, had a similar neuritogenic effect to FGF2 in clinically relevant m-htt 50Q-expressing neurons. This study has developed an in vitro model of primary hippocampal neurons transfected with m-htt-coding vectors that is a powerful tool to study m-htt-related effects on neuronal placticity.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Hipocampo/efeitos dos fármacos , Proteína Huntingtina/metabolismo , Moléculas de Adesão de Célula Nervosa/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oligopeptídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Moléculas de Adesão de Célula Nervosa/agonistas , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Proteínas Recombinantes
7.
Dev Neurosci ; 40(5-6): 586-600, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31141813

RESUMO

Preterm birth interrupts intrauterine brain growth and maturation and may induce a delay in postnatal neurodevelopment. Such developmental delays can result from the reduced fetal age at birth, together with the clinical compli-cations of preterm birth (e.g., hypoxia, ischemia, and inflammation). We hypothesized that late preterm birth, inducing only mild clinical complications, has minimal effects on brain-related outcomes such as motor function and behavior. Using the pig as a model for late preterm infants, piglets were cesarean delivered preterm (90%, 106 days gestation) or at full term, reared by identical procedures, and euthanized for tissue collection at birth or after 11 days (e.g., term-corrected age for preterm pigs). Clinical variables and both structural and functional brain endpoints were assessed. The preterm pigs were slow to get on their feet, gained less weight (-30%), and had a higher cerebral hydration level and blood-to-cerebrospinal fluid permeability than the term pigs. At term-corrected age (11 days), the absolute weight of the brain and the weights of its regions were similar between 11-day-old preterm and newborn term pigs, and both were lower than in 11-day-old term pigs. Postnatally, physical activity and movements in an open field were similar, except that preterm pigs showed a reduced normalized stride length and increased normalized maximum stride height. Perinatal brain growth is closely associated with advancing postconceptional age in pigs, and late preterm birth is initially associated with impaired brain growth and physical activity. Postnatally, neuromuscular functions mature rapidly and become similar to those in term pigs, even before term-corrected age. Neuromuscular functions and behavior may show rapid postnatal adaptation to late preterm birth in both pigs and infants.

8.
J Neuroinflammation ; 15(1): 180, 2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885660

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is an acute gut inflammatory disorder that occurs in preterm infants in the first weeks after birth. Infants surviving NEC often show impaired neurodevelopment. The mechanisms linking NEC lesions with later neurodevelopment are poorly understood but may include proinflammatory signaling in the immature brain. Using preterm pigs as a model for preterm infants, we hypothesized that severe intestinal NEC lesions are associated with acute effects on the developing hippocampus. METHODS: Cesarean-delivered preterm pigs (n = 117) were reared for 8 days and spontaneously developed variable severity of NEC lesions. Neonatal arousal, physical activity, and in vitro neuritogenic effects of cerebrospinal fluid (CSF) were investigated in pigs showing NEC lesions in the colon (Co-NEC) or in the small intestine (Si-NEC). Hippocampal transcriptome analysis and qPCR were used to assess gene expressions and their relation to biological processes, including neuroinflammation, and neural plasticity. Microglia activation was quantified by stereology. The neuritogenic response to selected proteins was investigated in primary cultures of hippocampal neurons. RESULTS: NEC development rapidly reduced the physical activity of pigs, especially when lesions occurred in the small intestine. Si-NEC and Co-NEC were associated with 27 and 12 hippocampal differentially expressed genes (DEGs), respectively. These included genes related to neuroinflammation (i.e., S100A8, S100A9, IL8, IL6, MMP8, SAA, TAGLN2) and hypoxia (i.e., PDK4, IER3, TXNIP, AGER), and they were all upregulated in Si-NEC pigs. Genes related to protection against oxidative stress (HBB, ALAS2) and oligodendrocytes (OPALIN) were downregulated in Si-NEC pigs. CSF collected from NEC pigs promoted neurite outgrowth in vitro, and the S100A9 and S100A8/S100A9 proteins may mediate the neuritogenic effects of NEC-related CSF on hippocampal neurons. NEC lesions did not affect total microglial cell number but markedly increased the proportion of Iba1-positive amoeboid microglial cells. CONCLUSIONS: NEC lesions, especially when present in the small intestine, are associated with changes to hippocampal gene expression that potentially mediate neuroinflammation and disturbed neural circuit formation via enhanced neuronal differentiation. Early brain-protective interventions may be critical for preterm infants affected by intestinal NEC lesions to reduce their later neurological dysfunctions.


Assuntos
Encéfalo/fisiopatologia , Citocinas/metabolismo , Enterocolite Necrosante/etiologia , Nascimento Prematuro/patologia , Nascimento Prematuro/fisiopatologia , Animais , Encéfalo/patologia , Líquido Cefalorraquidiano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Trato Gastrointestinal/metabolismo , Hipóxia/metabolismo , Inflamação/etiologia , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal , Condicionamento Físico Animal , Proteínas S100/metabolismo , Suínos , Fatores de Tempo , Transcriptoma/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Neuroinflammation ; 15(1): 113, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673373

RESUMO

BACKGROUND: Antenatal infection (i.e., chorioamnionitis) is an important risk factor for adverse neurodevelopmental outcomes after preterm birth. Destructive and developmental disturbances of the white matter are hallmarks of preterm brain injury. Understanding the temporal effects of antenatal infection in relation to the onset of neurological injury is crucial for the development of neurotherapeutics for preterm infants. However, these dynamics remain unstudied. METHODS: Time-mated ewes were intra-amniotically injected with lipopolysaccharide at 5, 12, or 24 h or 2, 4, 8, or 15 days before preterm delivery at 125 days gestational age (term ~ 150 days). Post mortem analyses for peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed. Moreover, considering the neuroprotective potential of erythropoietin (EPO) for perinatal brain injury, we evaluated (phosphorylated) EPO receptor (pEPOR) expression in the fetal brain following LPS exposure. RESULTS: Intra-amniotic exposure to this single bolus of LPS resulted in a biphasic systemic IL-6 and IL-8 response. In the developing brain, intra-amniotic LPS exposure induces a persistent microgliosis (IBA-1 immunoreactivity) but a shorter-lived increase in the pro-inflammatory marker COX-2. Cell death (caspase-3 immunoreactivity) was only observed when LPS exposure was greater than 8 days in the white matter, and there was a reduction in the number of (pre) oligodendrocytes (Olig2- and PDGFRα-positive cells) within the white matter at 15 days post LPS exposure only. pEPOR expression displayed a striking biphasic regulation following LPS exposure which may help explain contradicting results among clinical trials that tested EPO for the prevention of preterm brain injury. CONCLUSION: We provide increased understanding of the spatiotemporal pathophysiological changes in the preterm brain following intra-amniotic inflammation which may aid development of new interventions or implement interventions more effectively to prevent perinatal brain damage.


Assuntos
Lesões Encefálicas/etiologia , Corioamnionite/etiologia , Inflamação/etiologia , Nascimento Prematuro/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Líquido Amniótico/efeitos dos fármacos , Animais , Feminino , Feto , Idade Gestacional , Lipopolissacarídeos/toxicidade , Gravidez , Nascimento Prematuro/induzido quimicamente , Ovinos , Fatores de Tempo
10.
J Nutr ; 148(3): 336-347, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462356

RESUMO

Background: Nutrient fortification of human milk is often required to secure adequate growth and organ development for very preterm infants. There is concern that formula-based fortifiers (FFs) induce intestinal dysfunction, feeding intolerance, and necrotizing enterocolitis (NEC). Bovine colostrum (BC) may be an alternative nutrient fortifier, considering its high content of protein and milk bioactive factors. Objective: We investigated whether BC was superior to an FF product based on processed bovine milk and vegetable oil to fortify donor human milk (DHM) for preterm pigs, used as a model for infants. Methods: Sixty preterm pigs from 4 sows (Danish Landrace × Large White × Duroc, birth weight 944 ± 29 g) received decreasing volumes of parenteral nutrition (96-72 mL â‹… kg-1 â‹… d-1) and increasing volumes of enteral nutrition (24-132 mL â‹… kg-1 â‹… d-1) for 8 d. Pigs were fed donor porcine milk (DPM) and DHM with or without FF or BC fortification (+4.6 g protein â‹… kg-1 â‹… d-1). Results: DPM-fed pigs showed higher growth (10-fold), protein synthesis (+15-30%), villus heights, lactase and peptidase activities (+30%), and reduced intestinal cytokines (-50%) relative to DHM pigs (all P < 0.05). Fortification increased protein synthesis (+20-30%), but with higher weight gain and lower urea and cortisol concentrations for DHM+BC compared with DHM+FF pigs (2- to 3-fold differences, all P ≤ 0.06). DHM+FF pigs showed more diarrhea and reduced lactase and peptidase activities, hexose uptake, and villus heights relative to DHM+BC or DHM pigs (30-90% differences, P < 0.05). Fortification did not affect NEC incidence but DHM+BC pigs had lower colonic interleukin (IL)-6 and IL-8 concentrations relative to the remaining pigs (-30%, P = 0.06). DHM+FF pigs had higher stomach bacterial load than did DHM, and higher bacterial density along intestinal villi than did DHM and DHM+BC pigs (2- to 3-fold, P < 0.05). Conclusions: The FF product investigated in this study reduced growth, intestinal function, and protein utilization in DHM-fed preterm pigs, relative to BC as fortifier. The relevance of BC as an alternative nutrient fortifier for preterm infants should be tested.


Assuntos
Colostro , Dieta , Proteínas Alimentares/metabolismo , Alimentos Fortificados , Intestinos/crescimento & desenvolvimento , Leite Humano , Nascimento Prematuro , Animais , Bovinos , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/prevenção & controle , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interleucinas/metabolismo , Mucosa Intestinal , Intestinos/microbiologia , Masculino , Leite , Nutrientes , Apoio Nutricional , Óleos de Plantas , Gravidez , Biossíntese de Proteínas , Suínos
11.
Mediators Inflamm ; 2016: 1346390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990061

RESUMO

The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Eritropoetina/química , Feminino , Hematopoese/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Ratos Wistar
12.
J Neuroinflammation ; 11: 27, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24490798

RESUMO

BACKGROUND: Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide. METHODS: We investigated the binding of Ilantide to IL-1 receptor type I (IL-1RI) using surface plasmon resonance, the inhibition of Il-1ß-induced activation of nuclear factor κB (NF-κB) in HEK-Blue cells that contained an IL-1ß-sensitive reporter, the secretion of TNF-α in macrophages, protection against IL-1-induced apoptosis in neonatal pancreatic islets, and the penetration of Ilantide through the blood-brain barrier using competitive enzyme-linked immunosorbent assay (ELISA). We studied the effects of the peptide on social behavior and memory in rat models of lipopolysaccharide (LPS)- and amyloid-induced neuroinflammation, respectively, and its effect in a rat model of experimental autoimmune enchephalomyelitis. RESULTS: Ilantide bound IL-1RI, inhibited the IL-1ß-induced activation of NF-κB, and inhibited the secretion of TNF-α in vitro. Ilantide protected pancreatic islets from apoptosis in vitro and reduced inflammation in an animal model of arthritis. The peptide penetrated the blood-brain barrier. It reduced the deficits in social activity and memory in LPS- and amyloid-treated animals and delayed the development of experimental autoimmune enchephalomyelitis. CONCLUSIONS: These findings indicate that Ilantide is a novel and potent IL-1RI antagonist that is able to reduce inflammatory damage in the central nervous system and pancreatic islets.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Artrite/induzido quimicamente , Células Cultivadas , Cerebelo/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Humanos , Proteína Antagonista do Receptor de Interleucina 1/química , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Lipopolissacarídeos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Comportamento Social , Transfecção , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Med ; 19: 43-53, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23508572

RESUMO

We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.


Assuntos
Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Proteínas S100/farmacologia , Nervo Isquiático/efeitos dos fármacos , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/fisiopatologia , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína P0 da Mielina/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Proteínas S100/uso terapêutico , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Nervo Tibial/efeitos dos fármacos , Nervo Tibial/fisiopatologia
14.
FASEB J ; 26(10): 4174-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22750515

RESUMO

Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1 have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1ß and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic peptide, termed neurolide, which is modeled after a part of the binding interface of NLGN1 for NRXN1ß, can bind to NRXN1ß and mimic the biological properties of NLGN1 in vitro.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Células Cultivadas , Hipocampo/citologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Neuritos/metabolismo , Neurônios/metabolismo , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Ressonância de Plasmônio de Superfície
15.
Neurochem Res ; 38(12): 2550-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132641

RESUMO

ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase activity and activation of ErbB4 by NRG-1ß induced neurite extension, suggesting that ErbB1 and ErbB4 act as negative and positive regulators, respectively, of the neuritogenic response. Inherbin3, inhibited activation not only of ErbB1 but also of ErbB4 in primary neurons, strongly induced neurite outgrowth in rat cerebellar granule neurons, indicating that this effect mainly was due to inhibition of ErbB1 activation.


Assuntos
Cerebelo/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neuritos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Sequência de Bases , Células Cultivadas , Cerebelo/citologia , Primers do DNA , Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Fosforilação , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
16.
Front Neurosci ; 17: 1205819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404461

RESUMO

Introduction: Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Methods: Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. Results: The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus. Conclusion: Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.

17.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973010

RESUMO

Very preterm infants show low levels of insulin-like growth factor-1 (IGF-1), which is associated with postnatal growth restriction and poor neurologic outcomes. It remains unknown whether supplemental IGF-1 may stimulate neurodevelopment in preterm neonates. Using cesarean-delivered preterm pigs as a model of preterm infants, we investigated the effects of supplemental IGF-1 on motor function and on regional and cellular brain development. Pigs were treated with 2.25 mg/kg/d recombinant human IGF-1/IGF binding protein-3 complex from birth until day 5 or 9 before the collection of brain samples for quantitative immunohistochemistry (IHC), RNA sequencing, and quantitative PCR analyses. Brain protein synthesis was measured using in vivo labeling with [2H5] phenylalanine. We showed that the IGF-1 receptor was widely distributed in the brain and largely coexisted with immature neurons. Region-specific quantification of IHC labeling showed that IGF-1 treatment promoted neuronal differentiation, increased subcortical myelination, and attenuated synaptogenesis in a region-dependent and time-dependent manner. The expression levels of genes involved in neuronal and oligodendrocyte maturation, and angiogenic and transport functions were altered, reflecting enhanced brain maturation in response to IGF-1 treatment. Cerebellar protein synthesis was increased by 19% at day 5 and 14% at day 9 after IGF-1 treatment. Treatment had no effect on Iba1+ microglia or regional brain weights and did not affect motor development or the expression of genes related to IGF-1 signaling. In conclusion, the data show that supplemental IGF-1 promotes brain maturation in newborn preterm pigs. The results provide further support for IGF-1 supplementation therapy in the early postnatal period in preterm infants.


Assuntos
Recém-Nascido Prematuro , Fator de Crescimento Insulin-Like I , Gravidez , Feminino , Animais , Suínos , Recém-Nascido , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Suplementos Nutricionais
18.
J Neurochem ; 121(6): 915-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22469063

RESUMO

Apart from its hematopoietic activity, erythropoietin (EPO) is also known as a tissue-protective cytokine. In the brain, EPO and its receptor are up-regulated in response to insult and exert pro-survival effects. EPO binds to its receptor (EPOR) via high- and low-affinity binding sites (Sites 1 and 2, respectively), inducing conformational changes in the receptor, followed by the activation of downstream signaling cascades. Based on the crystal structure of the EPO:EPOR(2) complex, we designed a peptide, termed Epobis, whose sequence encompassed amino acids from binding Site 1. The present study shows that the Epobis peptide specifically binds to EPOR and induces neurite outgrowth from primary neurons in an EPOR-expression dependent manner. Furthermore, Epobis promoted the survival of hippocampal and cerebellar neuronal cultures after kainate treatment and KCl deprivation, respectively. Thus, we identified a new functional agonist of EPOR with the potential to promote neuroregeneration and neuroprotection.


Assuntos
Neuritos/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Receptores da Eritropoetina/agonistas , Receptores da Eritropoetina/metabolismo , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/química , Eritropoetina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Modelos Moleculares , Fármacos Neuroprotetores/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Ressonância de Plasmônio de Superfície , Transfecção
19.
Front Cell Neurosci ; 16: 887212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634471

RESUMO

Newborn infants are prone to sepsis and related inflammation of different organs. Neuroinflammation has been associated with long-term adverse neuronal (neuropsychiatric/neurodegenerative) outcomes, including attention deficit hyperactivity disorder (ADHD) or even Alzheimer's disease. Despite a vast number of findings on sepsis-induced inflammatory responses in the central nervous system (CNS), how neuroinflammation affects brain development remains largely elusive. In this study, neonates with clinical sepsis and screened for meningitis were included and classified by the neuroinflammation status based on cerebrospinal fluid (CSF) parameters (INF vs. NOINF). CSF samples collected from clinical screening were subjected to proteomics analysis. Proteins with differential abundance were subjected to enrichment analysis to reveal affected biological pathways. INF and NOINF infants had similar demographic data and hematological and biochemical parameters in blood and CSF. The CSF proteomes were essentially different between the two groups. All 65 proteins with differential abundance showed lower abundance in the INF group and functionally covered pivotal developmental processes, including axonal and synaptic function and extracellular homeostasis. CSF proteins, PTPRZ1 and IGFBP4, were correlated with C-reactive protein (CRP) and ratios of immature/total neutrophils in blood. In general, a substantial change in the CSF protein profile was found under neuroinflammation, and these changes are related to systemic conditions. The results suggest that changes in CSF proteins may be involved in sepsis-affected neurodevelopment, such as disturbances in circuit formation, which has the potential to predispose neonates to long-term adverse outcomes.

20.
Mol Neurobiol ; 59(4): 2204-2218, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064541

RESUMO

Chorioamnionitis (CA) is a risk factor for preterm birth and is associated with neurodevelopmental delay and cognitive disorders. Prenatal inflammation-induced brain injury may resolve during the immediate postnatal period when rapid brain remodeling occurs. Cerebrospinal fluid (CSF) collected at birth may be a critical source of predictive biomarkers. Using pigs as a model of preterm infants exposed to CA, we hypothesized that prenatal lipopolysaccharide (LPS) exposure induces proteome changes in the CSF and brain at birth and postnatally. Fetal piglets (103 days gestation of full-term at 117 days) were administered intra-amniotic (IA) lipopolysaccharide (LPS) 3 days before preterm delivery by caesarian section. CSF and brain tissue were collected on postnatal Days 1 and 5 (P1 and P5). CSF and hippocampal proteins were profiled by LC-MS-based quantitative proteomics. Neuroinflammatory responses in the cerebral cortex, periventricular white matter and hippocampus were evaluated by immunohistochemistry, and gene expression was evaluated by qPCR. Pigs exposed to LPS in utero showed changes in CSF protein levels at birth but not at P5. Complement protein C3, hemopexin, vasoactive intestinal peptide, carboxypeptidase N subunit 2, ITIH1, and plasminogen expression were upregulated in the CSF, while proteins associated with axon growth and synaptic functions (FGFR1, BASP1, HSPD1, UBER2N, and RCN2), adhesion (talin1), and neuronal survival (Atox1) were downregulated. Microglia, but not astrocytes, were activated by LPS at P5 in the hippocampus but not in other brain regions. At this time, marginal increases in complement protein C3, LBP, HIF1a, Basp1, Minpp1, and FGFR1 transcription indicated hippocampal proinflammatory responses. In conclusion, few days exposure to endotoxin prenatally induce proteome changes in the CSF and brain at birth, but most changes resolve a few days later. The developing hippocampus has high neuronal plasticity in response to perinatal inflammation. Changes in CSF protein expression at birth may predict later structural brain damage in preterm infants exposed to variable types and durations of CA-related inflammation in utero.


Assuntos
Lesões Encefálicas , Corioamnionite , Nascimento Prematuro , Animais , Encéfalo , Lesões Encefálicas/complicações , Proteínas de Ligação ao Cálcio , Corioamnionite/induzido quimicamente , Proteínas do Sistema Complemento/efeitos adversos , Proteínas de Transporte de Cobre , Endotoxinas/toxicidade , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Lipopolissacarídeos/farmacologia , Chaperonas Moleculares , Gravidez , Proteoma , Proteômica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA