Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Drug Chem Toxicol ; 47(1): 90-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37314742

RESUMO

The present study was designed to green synthesize titanium dioxide nanoparticles (G-TiO2 NPs) using Salacia reticulata leaf extract as a reducing and capping agent to assess antidiabetic, anti-inflammatory, and antibacterial effects as well as toxicity evaluation in zebrafish. Besides, zebrafish embryos were employed to study the effect of G-TiO2 NPs on embryonic development. Zebrafish embryos were treated with TiO2 as well as G-TiO2 NPs at four different concentrations, i.e., 25, 50, 100, and 200 µg/ml for 24-96-hour post-fertilization (hpf). The SEM analysis of G-TiO2 NPs confirmed that the size was in the range of 32-46 nm and characterized by EDX, X-ray diffraction (XRD), FTIR, UV-vis spectra. During 24-96-hour post-fertilization (hpf), the results showed that 25-100 µg/ml of TiO2 and G-TiO2 NP instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. TiO2 and G-TiO2 NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. Exposure of larvae to the highest concentrations of 200 µg/ml TiO2 and G-TiO2 NPs caused maximum mortality at all time points and reached 70% and 50%, respectively, at 96 hpf. Besides, both TiO2 and G-TiO2 NP revealed antidiabetic and anti-inflammatory effects in vitro. In addition, G-TiO2 NPs exhibited antibacterial effects. Taken together, this study provided a valuable insight into the synthesis of TiO2 NPs using green methods and the synthesized G-TiO2 NPs possess moderate toxicity and potent antidiabetic, anti-inflammatory and antibacterial activities.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Animais , Peixe-Zebra , Nanopartículas Metálicas/toxicidade , Antibacterianos/toxicidade , Titânio/toxicidade , Hipoglicemiantes , Anti-Inflamatórios
2.
Luminescence ; 37(4): 633-641, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35102681

RESUMO

In the present work, an improved class of protein functionalized fluorescent 2D Ti3 C2 MXene quantum dots (MXene QDs) was prepared using a hydrothermal method. Exfoliated 2D Ti3 C2 sheets were used as the starting precursor and transport protein bovine serum albumin (BSA) was used to functionalize the MXene QDs. BSA-functionalized MXene QDs exhibited excellent photophysical property and stability at various physiological parameters. High-resolution transmission electron microscopy analysis showed that the BSA@MXene QDs were quasispherical in shape with a size of ~2 nm. The fluorescence intensity of BSA@MXene QDs was selectively quenched in the presence of Fe3+ ions. The mechanism of fluorescence quenching was further substantiated using time-resolved fluorescence and Stern-Volmer analysis. The sensing assay showed a linear response within the concentration range 0-150 µM of Fe3+ ions with excellent limit of detection. BSA@MXene QDs probe showed good selectivity toward ferric ions even in the presence of other potential interferences. The practical applicability of BSA@MXene QDs was further tested in real samples for Fe3+ ion quantification and the sensor had good recovery rates. The cytotoxicity studies of the BSA@MXene QDs toward the human glioblastoma cells revealed that BSA@MXene QDs are biocompatible at lower doses and showed significant cytotoxicity at higher dosages.


Assuntos
Pontos Quânticos , Corantes Fluorescentes , Humanos , Íons , Pontos Quânticos/toxicidade , Soroalbumina Bovina/metabolismo , Titânio
3.
Parasitol Res ; 115(3): 997-1013, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612497

RESUMO

Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 µg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 µg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 µg/ml (CQ-s) and 71.16 µg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 µg/ml (CQ-s) and 88.34 µg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.


Assuntos
Antimaláricos/química , Inseticidas/química , Extratos Vegetais/química , Pteridium/química , Prata/toxicidade , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Antimaláricos/toxicidade , Humanos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Malária/parasitologia , Malária/prevenção & controle , Nanopartículas/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Pteridium/metabolismo , Prata/química , Difração de Raios X
4.
Parasitol Res ; 115(3): 1015-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26573518

RESUMO

Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.


Assuntos
Aedes , Azadirachta/química , Insetos Vetores , Inseticidas , Nanopartículas Metálicas , Aedes/efeitos dos fármacos , Aedes/genética , Animais , Ensaio Cometa , Dano ao DNA , Dengue/transmissão , Glicerídeos , Carpa Dourada/genética , Carpa Dourada/fisiologia , Humanos , Repelentes de Insetos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Testes para Micronúcleos , Extratos Vegetais/farmacologia , Folhas de Planta , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Prata , Terpenos
5.
Parasitol Res ; 115(1): 107-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26358100

RESUMO

Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. The standard method of utilisation of morphological characters becomes challenging due to various factors such as phenotypical variations. We explored the complementary approach of CO1 gene-based identification, analysing ten species of mosquito vectors belonging to three genera, Aedes, Culex and Anopheles from India. Analysed nucleotide sequences were found without pseudo genes and indels; they match with high similarity in nucleotide Basic Local Alignment Search Tool (BLASTn) search. The partial CO1 sequence of Anopheles niligricus was the first time record submitted to National Center for Biotechnology Information (NCBI). Mean intra- and interspecies divergence was found to be 1.30 and 3.83 %, respectively. The congeneric divergence was three times higher than the conspecifics. Deep intraspecific divergence was noted in three of the species, and the reason could be explained more accurately in the future by improving the sample size across different locations. The transitional and transversional substitutions were tested individually. Ts and Tv substitutions in all the 1st, 2nd and 3rd codons were estimated to be (0.44, 99.51), (40.35, 59.66) and (59.16, 40.84), respectively. Saturation of the sequences was resolved, since both the Ts and Tv exhibited a linear relationship suggesting that the sequences were not saturated. NJ and ML tree analysis showed that the individuals of the same species clustered together based on the CO1 sequence similarity, regardless of their collection site and geographic location. Overall, this study adds basic knowledge to molecular evolution of mosquito vectors of medical and veterinary importance and may be useful to improve biotechnological tools employed in Culicidae control programmes.


Assuntos
Culicidae/genética , Código de Barras de DNA Taxonômico , Evolução Molecular , Genes Mitocondriais , Insetos Vetores/genética , Aedes/genética , Animais , Anopheles/genética , Sequência de Bases , Análise por Conglomerados , Culex/genética , Ciclo-Oxigenase 1/genética , Código de Barras de DNA Taxonômico/métodos , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , Genes Mitocondriais/genética , Marcadores Genéticos , Humanos , Índia , Filogenia , Reação em Cadeia da Polimerase
6.
Parasitol Res ; 115(3): 1149-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627691

RESUMO

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.


Assuntos
Aedes/genética , Meio Ambiente , Variação Genética , Insetos Vetores/genética , Aedes/virologia , África Ocidental , Animais , DNA Mitocondrial/genética , Dengue/transmissão , Vírus da Dengue/fisiologia , Fluxo Gênico , Geografia , Haplótipos , Humanos , Índia
7.
Parasitol Res ; 115(2): 651-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462804

RESUMO

Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV­vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 µg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 µg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely, AgNP-treated infected cells showed reduced levels of fluorescence, failing to show significant viral load. Overall, our study showed that alga-mediated synthesis of metal nanoparticles may be considered to develop newer, safer, and cheap tools in the fight against the dengue virus, serotype DEN-2, and its vector A. aegypti, with little cytotoxicity on mammalian cells.


Assuntos
Aedes , Vírus da Dengue/crescimento & desenvolvimento , Insetos Vetores , Inseticidas , Nanopartículas Metálicas/toxicidade , Rodófitas/metabolismo , Animais , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Dengue/prevenção & controle , Dengue/transmissão , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Nanopartículas Metálicas/química , Óxido Nítrico/metabolismo , Picratos/metabolismo , Folhas de Planta/química , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Prata , Células Vero , Replicação Viral/efeitos dos fármacos , Difração de Raios X
8.
Parasitol Res ; 115(3): 1071-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26614358

RESUMO

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV-Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological niche of Cx. quinquefasciatus.


Assuntos
Culex , Insetos Vetores , Nanopartículas/toxicidade , Animais , Benzotiazóis/metabolismo , Compostos de Bifenilo/metabolismo , Carbono , Culex/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Carpa Dourada/genética , Carpa Dourada/fisiologia , Heterópteros/efeitos dos fármacos , Heterópteros/genética , Heterópteros/fisiologia , Índia , Indicadores e Reagentes/metabolismo , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Dose Letal Mediana , Moringa oleifera/química , Nanopartículas/química , Picratos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Comportamento Predatório/efeitos dos fármacos , Pupa/efeitos dos fármacos , Sementes/química , Prata , Organismos Livres de Patógenos Específicos , Ácidos Sulfônicos/metabolismo
9.
Exp Parasitol ; 153: 129-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25819295

RESUMO

Plant-borne compounds can be employed to synthesize mosquitocidal nanoparticles that are effective at low doses. However, how they affect the activity of mosquito predators in the aquatic environment is unknown. In this study, we synthesized gold nanoparticles (AuN) using the leaf extract of Cymbopogon citratus, which acted as a reducing and capping agent. AuN were characterized by a variety of biophysical methods and sorted for size in order to confirm structural integrity. C. citratus extract and biosynthesized AuN were tested against larvae and pupae of the malaria vector Anopheles stephensi and the dengue vector Aedes aegypti. LC50 of C. citratus extract ranged from 219.32 ppm to 471.36 ppm. LC50 of AuN ranged from 18.80 ppm to 41.52 ppm. In laboratory, the predatory efficiency of the cyclopoid crustacean Mesocyclops aspericornis against A. stephensi larvae was 26.8% (larva I) and 17% (larva II), while against A. aegypti was 56% (I) and 35.1% (II). Predation against late-instar larvae was minimal. In AuN-contaminated environment,predation efficiency against A. stephensi was 45.6% (I) and 26.7% (II), while against A. aegypti was 77.3% (I) and 51.6% (II). Overall, low doses of AuN may help to boost the control of Anopheles and Aedes larval populations in copepod-based control programs.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Copépodes/fisiologia , Cymbopogon/química , Ouro/farmacologia , Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Anopheles/crescimento & desenvolvimento , Ouro/química , Controle de Insetos/instrumentação , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Nanopartículas/química , Extratos Vegetais/química , Comportamento Predatório
10.
Parasitol Res ; 114(2): 391-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25563612

RESUMO

Mosquitoes (Diptera: Culicidae) represent an important threat to millions of people worldwide, since they act as vectors for important pathogens, such as malaria, yellow fever, dengue and West Nile. Control programmes mainly rely on chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. In recent years, huge efforts have been carried out to propose new eco-friendly alternatives, with a special focus on the evaluation of plant-borne mosquitocidal compounds. Major examples are neem-based products (Azadirachta indica A. Juss, Meliaceae) that have been proven as really effective against a huge range of pests of medical and veterinary importance, including mosquitoes. Recent research highlighted that neem cake, a cheap by-product from neem oil extraction, is an important source of mosquitocidal metabolites. In this review, we examined (i) the latest achievements about neem cake metabolomics with special reference to nor-terpenoid and related content; (ii) the neem cake ovicidal, larvicidal and pupicidal toxicity against Aedes, Anopheles and Culex mosquito vectors; (iii) its non-target effects against vertebrates; and (iv) its oviposition deterrence effects on mosquito females. Overall, neem cake can be proposed as an eco-friendly and low-cost source of chemicals to build newer and safer control tools against mosquito vectors.


Assuntos
Azadirachta/química , Culicidae/efeitos dos fármacos , Glicerídeos/farmacologia , Inseticidas/farmacologia , Oviposição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Culicidae/anatomia & histologia , Feminino , Glicerídeos/isolamento & purificação , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Terpenos/isolamento & purificação
11.
Parasitol Res ; 114(4): 1519-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653031

RESUMO

Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in medical entomology and parasitology, allowing us to propose A. vera-synthesized silver nanoparticles as effective candidates to develop newer and safer mosquitocidal control tools.


Assuntos
Aloe/química , Anopheles/efeitos dos fármacos , Antibacterianos/farmacologia , Inseticidas/farmacologia , Nanopartículas/toxicidade , Extratos Vegetais/farmacologia , Prata/farmacologia , Animais , Anopheles/crescimento & desenvolvimento , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Inseticidas/síntese química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malária/transmissão , Extratos Vegetais/síntese química , Folhas de Planta/química , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Difração de Raios X
12.
Parasitol Res ; 114(4): 1551-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25669140

RESUMO

Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is the primary vector of dengue. The use of synthetic insecticides to control Aedes mosquitoes lead to high operational costs and adverse nontarget effects. In this scenario, eco-friendly control tools are a priority. We proposed a novel method to synthesize silver nanoparticles using the aqueous leaf extract of Phyllanthus niruri, a cheap and nontoxic material. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 420 nm corresponding to the surface plasmon resonance band of nanoparticles. SEM analyses of the synthesized nanoparticles showed a mean size of 30-60 nm. EDX spectrum showed the chemical composition of the synthesized nanoparticles. XRD highlighted that the nanoparticles are crystalline in nature with face-centered cubic geometry. Fourier transform infrared spectroscopy (FTIR) of nanoparticles exhibited prominent peaks 3,327.63, 2,125.87, 1,637.89, 644.35, 597.41, and 554.63 cm(-1). In laboratory assays, the aqueous extract of P. niruri was toxic against larval instars (I-IV) and pupae of A. aegypti. LC50 was 158.24 ppm (I), 183.20 ppm (II), 210.53 ppm (III), 210.53 ppm (IV), and 358.08 ppm (pupae). P. niruri-synthesized nanoparticles were highly effective against A. aegypti, with LC50 of 3.90 ppm (I), 5.01 ppm (II), 6.2 ppm (III), 8.9 ppm (IV), and 13.04 ppm (pupae). In the field, the application of silver nanoparticles (10 × LC50) lead to A. aegypti larval reduction of 47.6%, 76.7% and 100%, after 24, 48, and 72 h, while the P. niruri extract lead to 39.9%, 69.2 % and 100 % of reduction, respectively. In adulticidal experiments, P. niruri extract and nanoparticles showed LC50 and LC90 of 174.14 and 6.68 ppm and 422.29 and 23.58 ppm, respectively. Overall, this study highlights that the possibility to employ P. niruri leaf extract and green-synthesized silver nanoparticles in mosquito control programs is concrete, since both are effective at lower doses if compared to synthetic products currently marketed, thus they could be an advantageous alternative to build newer and safer tools against dengue vectors.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/toxicidade , Nanopartículas Metálicas/toxicidade , Phyllanthus/química , Extratos Vegetais/toxicidade , Prata/toxicidade , Aedes/crescimento & desenvolvimento , Animais , Dengue/transmissão , Humanos , Insetos Vetores/efeitos dos fármacos , Inseticidas/síntese química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Controle de Mosquitos , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Ressonância de Plasmônio de Superfície
13.
Parasitol Res ; 114(6): 2243-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25782680

RESUMO

Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC50 values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC50 of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars. Overall, our study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.


Assuntos
Copépodes/efeitos dos fármacos , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Alga Marinha/metabolismo , Prata/farmacologia , Animais , Inseticidas/química , Inseticidas/metabolismo , Larva , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Comportamento Predatório/efeitos dos fármacos , Prata/química , Difração de Raios X
14.
Parasitol Res ; 114(12): 4645-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337272

RESUMO

Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.


Assuntos
Anopheles/efeitos dos fármacos , Datura metel/química , Insetos Vetores/efeitos dos fármacos , Nanopartículas/metabolismo , Odonatos/fisiologia , Extratos Vegetais/química , Prata/metabolismo , Animais , Anopheles/fisiologia , Datura metel/metabolismo , Humanos , Insetos Vetores/fisiologia , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/fisiologia , Malária/transmissão , Nanopartículas/química , Ninfa/efeitos dos fármacos , Ninfa/crescimento & desenvolvimento , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Prata/farmacologia
15.
Parasitol Res ; 114(11): 4305-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26281786

RESUMO

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43-79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100% after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70% in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = -0.61, -0.63, and -0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first report about ovicidal activity of metal nanoparticles against mosquito vectors.


Assuntos
Antibacterianos/metabolismo , Culicidae/efeitos dos fármacos , Inseticidas/metabolismo , Nanopartículas Metálicas/química , Sargassum/metabolismo , Prata/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Culicidae/crescimento & desenvolvimento , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos , Folhas de Planta/química , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Ressonância de Plasmônio de Superfície
16.
Parasitol Res ; 114(10): 3657-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122992

RESUMO

Each year, mosquito-borne diseases infect nearly 700 million people, resulting to more than 1 million deaths. In this study, we evaluated the larvicidal, pupicidal, and smoke toxicity of Senna occidentalis and Ocimum basilicum leaf extracts against the malaria vector Anopheles stephensi. Furthermore, the antiplasmodial activity of plant extracts was evaluated against chloroquine (CQ)-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. In larvicidal and pupicidal experiments, S. occidentalis LC50 ranged from 31.05 (I instar larvae) to 75.15 ppm (pupae), and O. basilicum LC50 ranged from 29.69 (I instar larvae) to 69 ppm (pupae). Smoke toxicity experiments conducted against adults showed that S. occidentalis and O. basilicum coils evoked mortality rates comparable to the pyrethrin-based positive control (38, 52, and 42%, respectively). In antiplasmodial assays, Senna occidentalis 50% inhibitory concentration (IC50) were 48.80 µg/ml (CQ-s) and 54.28 µg/ml (CQ-r), while O. basilicum IC50 were 68.14 µg/ml (CQ-s) and 67.27 µg/ml (CQ-r). Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools.


Assuntos
Anopheles/efeitos dos fármacos , Antimaláricos/farmacologia , Inseticidas/farmacologia , Ocimum basilicum/química , Plasmodium falciparum/efeitos dos fármacos , Senna/química , Animais , Larva/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pupa/efeitos dos fármacos
17.
Parasitol Res ; 114(11): 4087-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26227141

RESUMO

Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 µg/ml (CQ-s) and 66.36 µg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 µg/ml (CQ-s) and 79.13 µg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/metabolismo , Alga Marinha/metabolismo , Prata/metabolismo , Ulva/metabolismo , Animais , Anopheles/parasitologia , Feminino , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malária/parasitologia , Malária/transmissão , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Plasmodium falciparum/fisiologia , Pupa/efeitos dos fármacos , Alga Marinha/química , Prata/química , Prata/farmacologia , Ulva/química , Difração de Raios X
18.
Parasitol Res ; 114(9): 3315-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063530

RESUMO

Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 µl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 µl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.


Assuntos
Aedes/efeitos dos fármacos , Vírus da Dengue , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/farmacologia , Animais , Chlorocebus aethiops , Dengue/prevenção & controle , Dengue/virologia , Química Verde , Humanos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Moringa oleifera/química , Sementes/química , Prata/química , Relação Estrutura-Atividade , Células Vero
19.
Parasitol Res ; 114(10): 3601-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26091763

RESUMO

Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.


Assuntos
Aedes/fisiologia , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Comportamento Predatório/fisiologia , Rana catesbeiana/fisiologia , Prata/farmacologia , Animais , Artemisia/química , Inseticidas/química , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química
20.
Ecotoxicol Environ Saf ; 121: 31-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26184431

RESUMO

Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools.


Assuntos
Aedes/efeitos dos fármacos , Agentes de Controle Biológico/farmacologia , Lepidópteros/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Toxinas Biológicas/farmacologia , Animais , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Folhas de Planta/química , Rodófitas/química , Alga Marinha/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA