Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 146(11): 3654-3665, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949437

RESUMO

The quantification of global 5-methylcytosine (5mC) content has emerged as a promising approach for the diagnosis and prognosis of cancers. However, conventional methods for the global 5mC analysis require large quantities of DNA and may not be useful for liquid biopsy applications, where the amount of DNA available is limited. Herein, we report magnetic nanoparticles-assisted methylated DNA immunoprecipitation (e-MagnetoMethyl IP) coupled with electrochemical quantification of global DNA methylation. Carboxyl (-COOH) group-functionalized iron oxide nanoparticles (C-IONPs) synthesized by a novel starch-assisted gel formation method were conjugated with anti-5mC antibodies through EDC/NHS coupling (anti-5mC/C-IONPs). Anti-5mC/C-IONPs were subsequently mixed with DNA samples, in which they acted as dispersible capture agents to selectively bind 5mC residues and capture the methylated fraction of genomic DNA. The target-bound Anti-5mC/C-IONPs were magnetically separated and directly adsorbed onto the gold electrode surface using gold-DNA affinity interaction. The amount of DNA adsorbed on the electrode surface, which corresponds to the DNA methylation level in the sample, was electrochemically estimated by differential pulse voltammetric (DPV) study of an electroactive indicator [Ru(NH3)6]3+ bound to the surface-adsorbed DNA. Using a 200 ng DNA sample, the assay could successfully detect differences as low as 5% in global DNA methylation levels with high reproducibility (relative standard deviation (% RSD) = <5% for n = 3). The method could also reproducibly analyze various levels of global DNA methylation in synthetic samples as well as in cell lines. The method avoids bisulfite treatment, does not rely on enzymes for signal generation, and can detect global DNA methylation using clinically relevant quantities of sample DNA without PCR amplification. We believe that this proof-of-concept method could potentially find applications for liquid biopsy-based global DNA methylation analysis in point-of-care settings.


Assuntos
Metilação de DNA , Nanopartículas de Magnetita , Técnicas Eletroquímicas , Imunoprecipitação , Reprodutibilidade dos Testes
2.
ACS Nano ; 18(26): 16947-16957, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38870404

RESUMO

Two-dimensional (2D) wide bandgap materials are gaining significant interest for next-generation optoelectronic devices. However, fabricating electronic-grade 2D nanosheets from non-van der Waals (n-vdW) oxide semiconductors poses a great challenge due to their stronger interlayer coupling compared with vdW crystals. This strong coupling typically introduces defects during exfoliation, impairing the optoelectronic properties. Herein, we report the liquid-phase exfoliation of few-atomic-layer thin, defect-free, free-standing ZnO nanosheets. These micron-sized, ultrathin ZnO structures exhibit three different orientations aligned along both the polar c-plane as well as the nonpolar a- and m-planes. The superior crystalline quality of the ZnO nanosheets is validated through comprehensive characterization techniques. This result is supported by density functional theory (DFT) calculations, which reveals that the formation of oxygen vacancies is energetically less favorable in 2D ZnO and that the c-plane loses its polarity upon exfoliation. Unlike bulk ZnO, which is typically dominated by defect-induced emission, the exfoliated nanosheets exhibit a strong, ambient-stable excitonic UV emission. We further demonstrate the utility of solution processing of ZnO nanosheets by their hybrid integration with organic components to produce stable light emitting diodes (LEDs) for display applications.

4.
Nanoscale ; 15(6): 2659-2666, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36655913

RESUMO

Organic-inorganic hybrid lead trihalide perovskites have shown promise consistently in optoelectronic devices such as light-emitting diodes (LEDs), solar cells, photodetectors, sensors, and other optoelectronic devices. Perovskite-based LEDs (PSK-LEDs) have shown enormous potential, mostly due to their lower cost, easy synthesis via solution processibility, and highly tunable light-emitting behavior with higher performance. Despite the recent developments in green and blue PSK-LEDs over the years, there has been less development in the research area of red-emitting PSK-LEDs. Although some developments have led to spectrally, stable red-emitting PSK-LEDs, the stability of those devices still needs to be improved upon further for any practical application. In this work, to the best of our knowledge, for the first time, we used red-emitting 2D PSK as an active light-emitting layer which was further stabilized by red-emitting carbon dots (CDs). The CD-PSK composite films were used as an active layer in red emitting LEDs, and they showed high operational stability, and improved performance compared to the control device with only PSK film as the active layer. The composite device showed improved maximum luminescence (3011 cd m-2), charge density (330 mA cm-2), operational stability (8 hours), better EQE (10.2%), and low turn-on voltage of 2.6 V compared to the control device with maximum luminescence (1512 cd m-2), charge density (134 mA cm-2), operational stability (<2 hours), EQE (2.6%) and turn on voltage of 3.2 V. The low-cost hybrid approach using PSK building blocks together with CDs opens a new approach leading to a composite material, which has immense possibilities for tuning the structure further to maximize the performance.

5.
ACS Meas Sci Au ; 3(3): 143-161, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360040

RESUMO

Around the world, lung cancer has long been the main factor in cancer-related deaths, with small-cell lung cancer (SCLC) being the deadliest form of lung cancer. Cancer cell-derived exosomes and exosomal miRNAs are considered promising biomarkers for diagnosing and prognosis of various diseases, including SCLC. Due to the rapidity of SCLC metastasis, early detection and diagnosis can offer better diagnosis and prognosis and therefore increase the patient's chances of survival. Over the past several years, many methodologies have been developed for analyzing non-SCLC-derived exosomes. However, minimal advances have been made in SCLC-derived exosome analysis methodologies. This Review discusses the epidemiology and prominent biomarkers of SCLC. Followed by a discussion about the effective strategies for isolating and detecting SCLC-derived exosomes and exosomal miRNA, highlighting the critical challenges and limitations of current methodologies. Finally, an overview is provided detailing future perspectives for exosome-based SCLC research.

6.
Nanomicro Lett ; 14(1): 69, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35237871

RESUMO

The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material. In particular, nanocrystals (NCs) of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications. However, the presence of surface defects on the NCs negatively impacts their performance in devices. Herein, we report a compatible facial post-treatment of CsPbI3 nanocrystals using guanidinium iodide (GuI). It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation. As a consequence, the film of treated CsPbI3 nanocrystals exhibited significantly enhanced luminescence and charge transport properties, leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8% with high brightness (peak luminance of 7039 cd m-2 and a peak current density of 10.8 cd A-1). The EQE is over threefold higher than performance of untreated device (EQE: 3.8%). The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min (at current density of 25 mA cm-2), outperforming the untreated devices (T50 ~ 6 min).

7.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359688

RESUMO

DNA methylation is a cell-type-specific epigenetic marker that is essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. It is also responsible for the pathogenesis of many diseases, including cancers. Herein, we present a simple approach for quantifying global DNA methylation in ovarian cancer patient plasma samples based on a new class of biopolymer nanobeads. Our approach utilises the immune capture of target DNA and electrochemical quantification of global DNA methylation level within the targets in a three-step strategy that involves (i) initial preparation of target single-stranded DNA (ss-DNA) from the plasma of the patients' samples, (ii) direct adsorption of polymer nanobeads on the surface of a bare screen-printed gold electrode (SPE-Au) followed by the immobilisation of 5-methylcytosine (5mC)-horseradish peroxidase (HRP) antibody, and (iii) immune capture of target ss-DNA onto the electrode-bound PHB/5mC-HRP antibody conjugates and their subsequent qualification using the hydrogen peroxide/horseradish peroxidase/hydroquinone (H2O2/HRP/HQ) redox cycling system. In the presence of methylated DNA, the enzymatically produced (in situ) metabolites, i.e., benzoquinone (BQ), binds irreversibly to cellular DNA resulting in the unstable formation of DNA adducts and induced oxidative DNA strand breakage. These events reduce the available BQ in the system to support the redox cycling process and sequel DNA saturation on the platform, subsequently causing high Coulombic repulsion between BQ and negatively charged nucleotide strands. Thus, the increase in methylation levels on the electrode surface is inversely proportional to the current response. The method could successfully detect as low as 5% methylation level. In addition, the assay showed good reproducibility (% RSD ≤ 5%) and specificity by analysing various levels of methylation in cell lines and plasma DNA samples from patients with ovarian cancer. We envision that our bioengineered polymer nanobeads with high surface modification versatility could be a useful alternative platform for the electrochemical detection of varying molecular biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA