Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mutagenesis ; 30(3): 335-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25934985

RESUMO

As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RET(CD59-) and RBC(CD59-), respectively) in peripheral blood of male Sprague Dawley(®) rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RET(CD59-) and RBC(CD59-) (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies.


Assuntos
Proteínas de Membrana/genética , Mutagênicos/toxicidade , Uretana/toxicidade , Animais , Células Cultivadas , Ensaio Cometa , Masculino , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Mutagênese , Mutação , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Reticulócitos/patologia
2.
Mutagenesis ; 30(5): 603-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25925069

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has a reported sensitivity of 87% and specificity of 83%, and an overall concordance of 85% with in vivo rodent bioassay data. To date, the SHE assay is the only in vitro assay that exhibits multistage carcinogenicity. The assay uses morphological transformation, the first stage towards neoplasm, as an endpoint to predict the carcinogenic potential of a test agent. However, scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with 2,6-diaminotoluene, N-nitroso-N-ethylnitroguanidine, N-nitroso-N-methylurea, N-nitroso-N-ethylurea, EDTA, dimethyl sulphoxide (DMSO; vehicle control), methyl methanesulfonate, benzo[e]pyrene, mitomycin C, ethyl methanesulfonate, ampicillin or five different concentrations of benzo[a]pyrene. Macroscopically visible SHE colonies were located on the slides and interrogated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy acquiring five spectra per colony. The acquired IR data were analysed using Fisher's linear discriminant analysis (LDA) followed by principal component analysis (PCA)-LDA cluster vectors to extract major and minor discriminating wavenumbers for each treatment class. Each test agent vs. DMSO and treatment-induced transformed cells vs. corresponding non-transformed were classified by a unique combination of major and minor discriminating wavenumbers. Alterations associated with Amide I, Amide II, lipids and nucleic acids appear to be important in segregation of classes. Our findings suggest that a biophysical approach of ATR-FTIR spectroscopy with multivariate analysis could facilitate a more objective interrogation of SHE cells towards scoring for transformation and ultimately employing the assay for risk assessment of test agents.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Carcinógenos/classificação , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/patologia , Mesocricetus , Análise Multivariada , Análise de Componente Principal
3.
Mutagenesis ; 27(3): 375-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362182

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has utility in the assessment of potential chemical carcinogenicity (both genotoxic and non-genotoxic mechanisms of action). The assay uses morphological transformation as an end point and has a reported sensitivity of 87%, specificity of 83% and overall concordance of 85% with in vivo rodent bioassay data. However, the scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with benzo[a]pyrene, 3-methylcholanthrene, anthracene, N-nitroso-N-methylnitroguanidine, ortho-toluidine HCl, 2,4-diaminotoluene or D-mannitol for 7 days before fixation with methanol. Identified colonies were interrogated by acquiring a minimum of five infrared (IR) spectra per colony using attenuated total reflection Fourier-transform IR spectroscopy. Individual IR spectra were acquired over a spatial area of approximately 250 × 250 µm. Resultant data were analysed using Fisher's linear discriminant analysis and feature histogram algorithms to extract classifying biomarkers of test agent-specific effects or transformation in SHE cells. Clustering of spectral points suggested co-segregation or discrimination of test agent categories based on mechanism of action. Towards transformation, unifying alterations were associated with alterations in the Amide I and Amide II peaks; these were consistently major classifying biomarkers for transformed versus non-transformed SHE cells. Our approach highlights a novel method towards objectively screening and classifying SHE cells, be it to ascertain test agent treatment based on mechanism of action or transformation.


Assuntos
Carcinógenos/classificação , Transformação Celular Neoplásica , Mutagênicos/classificação , Animais , Biomarcadores/metabolismo , Carcinógenos/toxicidade , Células Cultivadas , Cricetinae , Interpretação Estatística de Dados , Embrião de Mamíferos/citologia , Concentração de Íons de Hidrogênio , Modelos Lineares , Mesocricetus , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Mutagenesis ; 27(1): 93-101, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21852270

RESUMO

Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Animais , Biomarcadores/análise , Linhagem Celular , Transformação Celular Neoplásica , Congressos como Assunto , Cosméticos/toxicidade , Humanos , Estudos de Validação como Assunto
5.
Mutat Res ; 744(1): 54-63, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22178964

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay (CTA) is an important in vitro method that is highly predictive of rodent carcinogenicity. It is a key method for reducing animal usage for carcinogenicity prediction. The SHE assay has been used for many years primarily to investigate and identify potential rodent carcinogens thereby reducing the number of 2-year bioassays performed in rodents. As for other assays with a long history of use, the SHE CTA has not undergone formal validation. To address this, the European Centre for the Validation of Alternative Methods (ECVAM) coordinated a prevalidation study. The aim of this study was to evaluate the within-laboratory reproducibility, test method transferability, and between-laboratory reproducibility and to develop a standardised state-of-the-art protocol for the SHE CTA at pH 6.7. Formal ECVAM principles for criteria on reproducibility (including the within-laboratory reproducibility, the transferability and the between-laboratories reproducibility) were applied. In addition to the assessment of reproducibility, this study helped define a standard protocol for use in developing an Organisation for Economic Co-operation and Development (OECD) test guideline for the SHE CTA. Six compounds were evaluated in this study: benzo(a)pyrene, 3-methylcholanthrene, o-toluidine HCl, 2,4-diaminotoluene, phthalic anhydride and anthracene. Results of this study demonstrate that a protocol is available that is transferable between laboratories, and that the SHE CTA at pH 6.7 is reproducible within- and between-laboratories.


Assuntos
Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica , Mesocricetus , Animais , Testes de Carcinogenicidade/normas , Carcinógenos , Linhagem Celular , Cricetinae , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas
6.
Mutat Res ; 744(1): 82-96, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22212200

RESUMO

This catalogue is a display of Syrian hamster embryo (SHE) cell colony photos representative of the cell transformation assay (CTA) carried out at pH 6.7. It is intended as a visual aid for the identification and the scoring of cell colonies in the conduct of the assay. A proper training from experienced personnel together with the protocol reported in this issue and the present photo catalogue will support method transfer and consistency in the assay results.


Assuntos
Recursos Audiovisuais , Testes de Carcinogenicidade/métodos , Catálogos como Assunto , Transformação Celular Neoplásica , Mesocricetus , Fotografação , Animais , Carcinógenos/toxicidade , Células Cultivadas , Cricetinae , Concentração de Íons de Hidrogênio
7.
Mutat Res ; 744(1): 76-81, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22198328

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline.


Assuntos
Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica , Mesocricetus , Alternativas aos Testes com Animais , Animais , Carcinógenos/toxicidade , Células Cultivadas , Cricetinae , Criopreservação , Concentração de Íons de Hidrogênio , Projetos de Pesquisa
8.
Mutat Res ; 744(1): 64-75, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22227405

RESUMO

The European Centre for the Validation of Alternative Methods (ECVAM) has organised an interlaboratory prevalidation study on the Syrian hamster embryo (SHE) cell transformation assay (CTA) at pH 7.0 for the detection of rodent carcinogens. The SHE CTA at pH 7.0 has been evaluated for its within-laboratory reproducibility, transferability and between-laboratory reproducibility. Four laboratories using the same basic protocol with minor modifications participated in this study and tested a series of six coded-chemicals: four rodent carcinogens (benzo(a)pyrene, 3-methylcholanthrene, 2,4-diaminotoluene and o-toluidine HCl) and two non-carcinogens (anthracene and phthalic anhydride). All the laboratories found the expected results with coded chemicals except for phthalic anhydride which resulted in a different call in only one laboratory. Based on the outcome of this study, it can be concluded that a standardised protocol is available that should be the basis for future use. This protocol and the assay system itself are transferable between laboratories and the SHE CTA at pH 7.0 is reproducible within- and between-laboratories.


Assuntos
Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica , Animais , Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Cricetinae , Concentração de Íons de Hidrogênio , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
9.
Mutat Res ; 725(1-2): 57-77, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21801851

RESUMO

The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed.


Assuntos
Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica , Animais , Células 3T3 BALB , Linhagem Celular , Genes ras/genética , Camundongos , Reprodutibilidade dos Testes
10.
Analyst ; 135(12): 3266-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20938551

RESUMO

The Syrian hamster embryo (SHE) assay (pH 6.7) is an in vitro candidate to replace in vivo carcinogenicity tests. However, the conventional method of visual scoring of foci (non-transformed vs. transformed colonies) can be time-consuming and is open to subjectivity. Infrared (IR) spectroscopy has the potential to provide objective assessment of such SHE colonies with the added advantage of potentially providing mechanistic information. In this study, SHE cells were treated with one of eight different chemical regimens, allowed in culture to attach and form foci on IR-reflective glass slides; these were subsequently interrogated by attenuated total reflection (ATR) Fourier-transform IR (FTIR) spectroscopy. Derived mid-IR spectra (n = 13,406) were subjected to chemometric analysis focusing primarily on the extraction of biochemical information related to test agent treatment and/or morphological transformation. The use of ATR-FTIR spectroscopy with chemometrics to analyze the SHE assay is a novel approach to toxicological assessment.


Assuntos
Bioensaio/instrumentação , Bioensaio/métodos , Embrião de Mamíferos/efeitos dos fármacos , Mesocricetus/embriologia , Compostos Orgânicos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Cricetinae , Análise Discriminante , Embrião de Mamíferos/citologia , Análise de Componente Principal
11.
Mutat Res ; 700(1-2): 44-50, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20452458

RESUMO

A new protocol has recently been developed and validated for the GreenScreen HC GADD45a-GFP genotoxicity reporter assay, enabling the incorporation of an S9 metabolic activation system into the assay. The S9 protocol employs flow-cytometric methodology for the detection of both reporter GFP fluorescence and propidium iodide fluorescence for the estimation of cellular viability. In the spirit of assay validation by bodies such as the European Centre for the Validation of Alternative Methods (ECVAM), the adapted metabolic activation protocol for the GADD45a-GFP assay has been undergoing 'pre-validation'. Results of phases I and II of this pre-validation, namely protocol refinement and protocol transfer, respectively, are presented here. In phase I the protocol was transferred to a second laboratory for initial assessment of method portability and subsequent refinement of the protocol. In phase II, the protocol was then transferred to two further laboratories along with the elaborated standard operating-procedure (SOP) for further assessment of transferability. The three transfer sites then undertook an assessment of the method's reproducibility by testing eight compounds. The outcome of the study was a refined protocol that was found to be highly transferable. It yielded 100% agreement in results between all four laboratories.


Assuntos
Biotransformação , Testes de Mutagenicidade/métodos , Reprodutibilidade dos Testes , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas de Fluorescência Verde , Humanos , Proteínas Nucleares
12.
Toxicology ; 258(1): 33-8, 2009 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-19167452

RESUMO

Primary Syrian hamster embryo (SHE) cells might be used to assess morphological transformation following treatment with chemical carcinogens. We employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to interrogate SHE colonies, as complex biomolecules absorb in the mid-infrared (IR; lambda=2-20microm) giving vibrational spectra associated with structure and function. Early-passage SHE cells were cultured (pH 6.7) in the presence or absence of benzo[a]pyrene (B[a]P; 5.0microg/ml). Unstained colonies were applied to an ATR crystal, and vibrational spectra were obtained in the ATR mode using a Bruker Vector 22 FTIR spectrometer with Helios ATR attachment. These were individually baseline-corrected and normalised. Spectra were then analysed using principal component analysis (PCA) plus linear discriminant analysis (LDA). PCA was used to reduce the dataset dimensions before LDA was employed to reveal clustering. This determined whether wavenumber-absorbance relationships expressed as single points (scores) in 'hyperspace' might on the basis of multivariate distance reveal biophysical differences associated with morphologies in vehicle control (non-transformed or transformed) or carcinogen-treated (non-transformed or transformed) cells. Retrospectively designated SHE colonies (following staining and microscopic analysis) clustered according to whether they were vehicle control (non-transformed), B[a]P-treated (non-transformed) or transformed (control and B[a]P-treated). Scores plots pointed to a B[a]P-treated phenotype and derived loadings plots highlighted distinguishing markers in control transformed vs. B[a]P-treated transformed; these were mostly associated with Amide I, Amide II and phosphate stretching (asymmetric and symmetric) vibrations. Combined application of ATR-FTIR spectroscopy and unsupervised (PCA)/supervised (LDA) may be a novel approach to scoring SHE colonies for morphological transformation.


Assuntos
Transformação Celular Neoplásica/patologia , Animais , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Contagem de Células , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Cricetinae , Embrião de Mamíferos , Mesocricetus , Fenótipo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Environ Mol Mutagen ; 60(9): 766-777, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335992

RESUMO

Arylboronic acids and esters (referred to collectively as arylboronic compounds) are commonly used intermediates in the synthesis of pharmaceuticals but pose a challenge for chemical syntheses because they are often positive for bacterial mutagenicity in vitro. As such, arylboronic compounds are then typically controlled to levels that are acceptable for mutagenic impurities, that is, the threshold of toxicological concern (TTC). This study used ICH M7 guidance to design and conduct a testing strategy to investigate the in vivo relevance of the in vitro positive findings of arylboronic compounds. Eight arylboronic compounds representing a variety of chemical scaffolds were tested in Sprague Dawley and/or Wistar rats in the in vivo Pig-a (peripheral blood reticulocytes and mature red blood cells) and/or comet assays (duodenum and/or liver). Five of the eight compounds were also tested in the micronucleus (peripheral blood) assay. The arylboronic compounds tested orally demonstrated high systemic exposure; thus the blood and bone marrow were adequately exposed to test article. One compound was administered intravenously due to formulation stability issues. This investigation showed that arylboronic compounds that were mutagenic in vitro were not found to be mutagenic in the corresponding in vivo assays. Therefore, arylboronic compounds similar to the scaffolds tested in this article may be considered non-mutagenic and managed in accordance with the ICH Q3A/Q3B guidelines. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Borônicos/toxicidade , Ésteres/toxicidade , Mutagênicos/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Ensaio Cometa/métodos , Duodeno/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fígado/diagnóstico por imagem , Masculino , Testes para Micronúcleos/métodos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reticulócitos/efeitos dos fármacos
14.
Mutat Res ; 654(2): 108-13, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18606566

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay has traditionally been conducted with a feeder layer of X-ray irradiated cells to provide growth support to the target cells seeded in low numbers. The feeder layer of cells consists of X-ray irradiated cells which are still viable but unable to replicate. We have tried seeding the target cells in conditioned media prepared from the stock culture flasks in lieu of plating them on a feeder layer. Three SHE cell isolates were tested to investigate the feasibility of this approach. With freshly prepared conditioned medium (LeBoeuf's Dulbecco's Modified Eagle's Medium with 2 mM L-glutamine and 20% fetal bovine serum), used within 2 weeks of preparation, there was essentially no difference in the number of target cell colonies in the conditioned medium and in the plates with the X-ray irradiated feeder cell layer. The plating efficiencies of the vehicle controls were within the historical range for the standard SHE cell transformation assay. In each experiment, the positive control benzo(a)pyrene [B(a)P] elicited a significant increase in morphological transformation frequency (MTF), with or without feeder cells. Three compounds, 2,4-diaminotoluene (2,4-DAT), 2,6-diaminotoluene (2,6-DAT), and chloral hydrate were tested in the SHE cell transformation assay without an X-ray irradiated feeder layer and using a 7-day exposure regimen. The results were comparable to those reported in the published literature using the standard methodology with feeder cells, with 2,4-DAT and chloral hydrate eliciting a significant increase in MTF, and 2,6-DAT not eliciting any increase in MTF. The results of this study demonstrate the feasibility of conducting the SHE cell transformation assay without the use of an X-ray irradiated feeder layer, thereby simplifying the test procedure and facilitating the scoring of morphologically transformed colonies.


Assuntos
Testes de Carcinogenicidade/métodos , Técnicas de Cultura de Células/métodos , Transformação Celular Neoplásica , Hidrato de Cloral/farmacologia , Meios de Cultivo Condicionados , Fenilenodiaminas/farmacologia , Animais , Cricetinae , Embrião de Mamíferos/citologia , Mesocricetus , Raios X
15.
Environ Mol Mutagen ; 59(9): 785-797, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216547

RESUMO

Splenic tumors have been reported in rat cancer bioassays with para-chloroaniline (PCA) and aniline. Development of these tumors is hypothesized to be due to hematotoxicity via the formation of methemoglobin (MetHb) and not direct DNA reactivity. To evaluate the mode of action (MOA) for tumor formation a transgenic rodent (TGR) in vivo gene mutation assay in Big Blue® TgF344 rats was performed with parallel micronuclei analysis in peripheral blood. Male rats were gavaged daily for 28 d to 0.5, 15, and 60 mg/kg PCA and 100 mg/kg aniline, the base molecular structure of PCA. On test day 10, the 60 mg/kg PCA dose was reduced to 30 mg/kg due to toxicity. On test day 4 and 29 peripheral blood micronucleus analysis was performed and on test day 29 clinical chemistry, hematology, and MetHb measurements were taken. At study termination, on test day 31, spleen, bone marrow, and liver (control tissue) were analyzed for cII transgene mutant frequency (MF). Repeat gavage exposure to PCA and aniline for 28 d did not produce an increase in cII transgene MF in analyzed tissues. An increase in micronuclei was seen at both time points at ≥15 mg/kg PCA and 100 mg/kg aniline. At the same dose levels, significant reductions in red blood cells, increases in absolute reticulocytes (ABRET), and increased levels of MetHb were observed. Together these results support that generation of micronuclei and tumorigenicity following exposure to PCA and aniline is due to compensatory mechanisms (e.g. increased cellular turnover) and not direct DNA reactivity. Environ. Mol. Mutagen. 59:785-797, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Compostos de Anilina/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Mutagênicos/toxicidade , Animais , Biomarcadores , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Medula Óssea/efeitos dos fármacos , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Testes Hematológicos , Fígado/efeitos dos fármacos , Testes de Mutagenicidade , Taxa de Mutação , Ratos , Baço/efeitos dos fármacos
16.
Mutat Res ; 627(1): 36-40, 2007 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-17157054

RESUMO

The Mouse Lymphoma Assay (MLA) Workgroup of the International Workshop on Genotoxicity Testing (IWGT), comprised of experts from Japan, Europe and the United States, met on September 9, 2005, in San Francisco, CA, USA. This meeting of the MLA Workgroup was devoted to reaching a consensus on issues involved with 24-h treatment. Recommendations were made concerning the acceptable values for the negative/solvent control (mutant frequency, cloning efficiency and suspension growth) and the criteria to define an acceptable positive control response. Consensus was also reached concerning the use of the global evaluation factor (GEF) and appropriate statistical trend analysis to define positive and negative responses for the 24-h treatment. The Workgroup agreed to continue their support of the International Committee on Harmonization (ICH) recommendation that the MLA assay should include a 24-h treatment (without S-9) in those situations where the short treatment (3-4 h) gives negative results.


Assuntos
Linfoma/genética , Testes de Mutagenicidade/métodos , Mutação , Timidina Quinase/genética , Animais , Camundongos , Mutagênicos/toxicidade , Fatores de Tempo
17.
Environ Mol Mutagen ; 58(4): 190-198, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28444993

RESUMO

In vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays. Cigarette smoke also contains nongenotoxic carcinogens and is a tumour promoter and cocarcinogen in vivo. We have combined a suite of in vitro assays to compare the relative biological effects of new categories of tobacco and nicotine products with traditional cigarettes. The Bhas promotion assay has been included in this test battery to provide an in vitro surrogate for detecting tumor promoters. The activity of an electronic cigarette (e-cigarette; Vype ePen) was compared to that of a reference cigarette (3R4F) in the promotion assay, using total particulate matter (TPM)/aerosol collected matter (ACM) and aqueous extracts (AqE) of product aerosol emissions. 3R4F TPM was positive in this assay at concentrations ≥6 µg/mL, while e-cigarette ACM did not have any promoter activity. AqE was found to be a lesssuitable test matrix in this assay due to high cytotoxicity. This is the first study to use the Bhas assay to compare tobacco and nicotine products and demonstrates the potential for its future application as part of a product assessment framework. These data add to growing evidence suggesting that e-cigarettes may provide a safer alternative to traditional cigarettes. Environ. Mol. Mutagen. 58:190-198, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Neoplasias/patologia , Animais , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Técnicas In Vitro , Camundongos
18.
Food Chem Toxicol ; 105: 278-284, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28454783

RESUMO

Tartrazine is approved as a food color additive internationally with INS number 102, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Yellow No. 5, and in Europe as food color additive with E number 102. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results of this study show clear absence of genotoxic activity for Tartrazine, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed these data and concluded that there is no genotoxicity concern for Tartrazine. Negative findings in parallel genotoxicity studies on Allura Red AC and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors.


Assuntos
Corantes de Alimentos/farmacologia , Tartrazina/farmacologia , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Europa (Continente) , Inocuidade dos Alimentos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes para Micronúcleos , Testes de Mutagenicidade
19.
Food Chem Toxicol ; 105: 308-314, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28458012

RESUMO

Allura Red AC is an approved food color additive internationally with INS number 129, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Red No. 40, and in Europe as food color additive with E number 129. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results show clear absence of genotoxic activity for Allura Red AC, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed the study and concluded that there is no genotoxicity concern for Allura Red AC. Negative findings in parallel genotoxicity studies on Tartrazine and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors.


Assuntos
Compostos Azo/farmacologia , Corantes de Alimentos/farmacologia , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Inocuidade dos Alimentos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes para Micronúcleos
20.
Environ Mol Mutagen ; 57(3): 220-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924598

RESUMO

Cigarette smoking remains a major health risk worldwide. Development of newer tobacco products requires the use of quantitative toxicological assays. Recently, v-Ha-ras transfected BALB/c3T3 (Bhas 42) cell transformation assay was established that simulates the two-stage animal tumorigenesis model and measures tumor initiating and promoting activities of chemicals. The present study was performed to assess the feasibility of using this Bhas 42 cell transformation assay to determine the initiation and promotion activities of cigarette smoke condensate (CSC) and its water soluble fraction. Further, the modulating effects of selenium and arsenic on cigarette smoke-induced cell transformation were investigated. Dimethyl sulfoxide (DMSO) and water extracts of CSC (CSC-D and CSC-W, respectively) were tested at concentrations of 2.5-40 µg mL(-1) in the initiation or promotion assay formats. Initiation protocol of the Bhas 42 assay showed a 3.5-fold increase in transformed foci at 40 µg mL(-1) of CSC-D but not CSC-W. The promotion phase of the assay yielded a robust dose response with CSC-D (2.5-40 µg mL(-1)) and CSC-W (20-40 µg mL(-1)). Preincubation of cells with selenium (100 nM) significantly reduced CSC-induced increase in cell transformation in initiation assay. Co-treatment of cells with a sub-toxic dose of arsenic significantly enhanced cell transformation activity of CSC-D in promotion assay. The results suggest a presence of both water soluble and insoluble tumor promoters in CSC, a role of oxidative stress in CSC-induced cell transformation, and usefulness of Bhas 42 cell transformation assay in comparing tobacco product toxicities and in studying the mechanisms of tobacco carcinogenesis.


Assuntos
Arsênio/toxicidade , Linhagem Celular Transformada/efeitos dos fármacos , Selênio/toxicidade , Fumar/efeitos adversos , Testes de Toxicidade/métodos , Animais , Testes de Carcinogenicidade/métodos , Transformação Celular Neoplásica/efeitos dos fármacos , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA