Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 22(11): e52532, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515392

RESUMO

Transforming growth factor-beta (TGFß) is a multifunctional cytokine with a well-established role in mammary gland development and both oncogenic and tumor-suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFß activity by acting as a storage compartment of latent-TGFß, but how TGFß is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFß signaling through the release of latent-TGFß from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFß signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent-TGFß1, while overexpression of hepsin in mammary tumors increased TGFß signaling. Cell-free and cell-based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent-TGFß and, importantly, that the ability of hepsin to activate TGFß signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFß pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.


Assuntos
Fibronectinas , Fator de Crescimento Transformador beta , Animais , Fibronectinas/metabolismo , Camundongos , Proteólise , Serina Endopeptidases/genética , Fator de Crescimento Transformador beta/metabolismo
2.
Mol Oncol ; 18(3): 547-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872868

RESUMO

Hepsin, a type II transmembrane serine protease, is commonly overexpressed in prostate and breast cancer. The hepsin protein is stabilized by the Ras-MAPK pathway, and, downstream, this protease regulates the degradation of extracellular matrix components and activates growth factor pathways, such as the hepatocyte growth factor (HGF) and transforming growth factor beta (TGFß) pathway. However, how exactly active hepsin promotes cell proliferation machinery to sustain tumor growth is not fully understood. Here, we show that genetic deletion of the gene encoding hepsin (Hpn) in a WAP-Myc model of aggressive MYC-driven breast cancer inhibits tumor growth in the primary syngrafted sites and the growth of disseminated tumors in the lungs. The suppression of tumor growth upon loss of hepsin was accompanied by downregulation of TGFß and EGFR signaling together with a reduction in epidermal growth factor receptor (EGFR) protein levels. We further demonstrate in 3D cultures of patient-derived breast cancer explants that both basal TGFß signaling and EGFR protein expression are inhibited by neutralizing antibodies or small-molecule inhibitors of hepsin. The study demonstrates a role for hepsin as a regulator of cell proliferation and tumor growth through TGFß and EGFR pathways, warranting consideration of hepsin as a potential indirect upstream target for therapeutic inhibition of TGFß and EGFR pathways in cancer.


Assuntos
Neoplasias da Mama , Fator de Crescimento Epidérmico , Serina Endopeptidases , Humanos , Masculino , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta
3.
Nat Commun ; 15(1): 633, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245503

RESUMO

The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.


Assuntos
Relógios Circadianos , Melanoma , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Carcinogênese/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Melanoma/genética
4.
Cancer Res ; 81(6): 1513-1527, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461973

RESUMO

Ras proteins play a causal role in human cancer by activating multiple pathways that promote cancer growth and invasion. However, little is known about how Ras induces the first diagnostic features of invasion in solid tumors, including loss of epithelial integrity and breaching of the basement membrane (BM). In this study, we found that oncogenic Ras strongly promotes the activation of hepsin, a member of the hepsin/TMPRSS type II transmembrane serine protease family. Mechanistically, the Ras-dependent hepsin activation was mediated via Raf-MEK-ERK signaling, which controlled hepsin protein stability through the heat shock transcription factor-1 stress pathway. In Ras-transformed three-dimensional mammary epithelial culture, ablation of hepsin restored desmosomal cell-cell junctions, hemidesmosomes, and BM integrity and epithelial cohesion. In tumor xenografts harboring mutant KRas, silencing of hepsin increased local invasion concomitantly with accumulation of collagen IV. These findings suggest that hepsin is a critical protease for Ras-dependent tumorigenesis, executing cell-cell and cell-matrix pathologies important for early tumor dissemination. SIGNIFICANCE: These findings identify the cell-surface serine protease hepsin as a potential therapeutic target for its role in oncogenic Ras-mediated deregulation of epithelial cell-cell and cell-matrix interactions and cohesion of epithelial structure.


Assuntos
Neoplasias da Mama/patologia , Células Epiteliais/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina Endopeptidases/metabolismo , Animais , Membrana Basal/citologia , Membrana Basal/patologia , Mama/patologia , Neoplasias da Mama/genética , Carcinogênese/patologia , Comunicação Celular , Linhagem Celular Tumoral , Colágeno Tipo IV/metabolismo , Desmossomos/patologia , Células Epiteliais/citologia , Feminino , Técnicas de Silenciamento de Genes , Fatores de Transcrição de Choque Térmico/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Mutação , Invasividade Neoplásica/patologia , Cultura Primária de Células , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina Endopeptidases/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Med Chem ; 62(2): 480-490, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30571119

RESUMO

Matriptase and hepsin belong to the family of type II transmembrane serine proteases (TTSPs). Increased activity of these and the plasma protease, hepatocyte growth factor activator (HGFA), is associated with unregulated cell signaling and tumor progression through increased MET and RON kinase signaling pathways. These proteases are highly expressed in multiple solid tumors and hematological malignancies. Herein, we detail the synthesis and structure-activity relationships (SAR) of a dipeptide library bearing Arg α-ketobenozothiazole (kbt) warheads as novel inhibitors of HGFA, matriptase, and hepsin. We elucidated the substrate specificity for HGFA using positional scanning of substrate combinatorial libraries (PS-SCL), which was used to discover selective inhibitors of matriptase and hepsin. Using these selective inhibitors, we have clarified the specific role of hepsin in maintaining epithelial cell membrane integrity, known to be lost in breast cancer progression. These selective compounds are useful as chemical biology tools and for future drug discovery efforts.


Assuntos
Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Sítios de Ligação , Linhagem Celular Tumoral , Dipeptídeos/química , Dipeptídeos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
6.
Methods Mol Biol ; 1731: 169-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29318553

RESUMO

Breakdown of the basement membrane is a key step that precedes tumor invasion, and accumulating evidence suggests a key role for the type II transmembrane proteases (TTSPs) in that process. Overexpression of a TTSP hepsin characterizes many solid cancers, including prostate, breast, and ovarian cancer, and in experimental tumor models, the elevated proteolytic activity of hepsin simultaneously activates several growth factors and cleaves basement membrane protein laminin-332, which is an essential component of the cell-basement membrane junction hemidesmosome. These hepsin-dependent molecular events associate with dramatic loss of basement membrane integrity in mouse tumor models and in three-dimensional (3D) epithelial culture. In particular, the 3D culture systems offer unprecedented possibilities to clarify the mechanistic basis of destructive interactions between out-of-control serine protease activity and the basement membrane structure. Here, we describe how to establish 3D mammary epithelial culture in an exogenous basement membrane-free egg white matrix and provide a protocol for quantitative analysis of the impact of hepsin on laminin-332 and its hemidesmosomal receptor α6-integrin by means of confocal microscopy imaging. These protocols were established to facilitate studies aiming to decipher the exact role of oncogenic proteases in tumor invasion processes and to identify novel therapeutic agents able to intervene these cancer critical processes.


Assuntos
Membrana Basal/metabolismo , Técnicas de Cultura de Células/métodos , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular/metabolismo , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Células Epiteliais , Humanos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Calinina
7.
J Med Chem ; 61(10): 4335-4347, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29701962

RESUMO

Hepsin is a membrane-anchored serine protease whose role in hepatocyte growth factor (HGF) signaling and epithelial integrity makes it a target of therapeutic interest in carcinogenesis and metastasis. Using an integrated design, synthesis, and screening platform, we were able to rapidly develop potent and selective inhibitors of hepsin. In progressing from the initial hit 7 to compound 53, the IC50 value against hepsin was improved from ∼1 µM to 22 nM, and the selectivity over urokinase-type plasminogen activator (uPA) was increased from 30-fold to >6000-fold. Subsequent in vitro ADMET profiling and cellular studies confirmed that the leading compounds are useful tools for interrogating the role of hepsin in breast tumorigenesis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/normas , Serina Endopeptidases/química , Neoplasias da Mama/patologia , Feminino , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA