RESUMO
We report superconducting properties of tungsten meander structures fabricated using the focussed ion beam (FIB) induced technique. Three meander structures with individual line widths of â¼70, â¼300 and â¼450 nm were fabricated for evaluation and comparison of the superconducting properties. The resistance-temperature characteristics of the meanders were measured and analysed down to a temperature of 100 mK. The superconducting properties such as critical temperature (T C) and upper-critical field (H C2) of these wires are in comparison to the reported values of FIB deposited tungsten available in literature. While the normal state resistance increases sharply as the width of the wire decreases, the superconducting transition temperature registered a slight decrease. Significant amount of residual resistance (3.8% of normal state value at 100 mK) was observed for the sample with the lowest width (70 nm). The residual resistance trails as function of temperature was analysed invoking theoretical models governing the phase slip induced dissipations in superconducting nanowires. The results indicated signature of phase slips as the width of the wire decreases: thermally activated phase slips dominant near to the T C and quantum phase slip (QPS) near to T C as well as much below to the T C. The magneto-resistance isotherms indicated quantum phase transitions (QPT); typical of a superconductor-to-insulator transition (SIT) driven by magnetic field. The SIT transition which originates from the intrinsic disorder present in the sample can be tuned by an external parameter such as magnetic field, and can be modelled by standard theories of QPT for quasi 2D or (2 + 1) D XY models. The successful fabrication of meander structures of W using FIB and the demonstration of superconductivity suggest that FIB deposited W can be exploited for many of the technological applications of superconducting nanowires such as superconducting nanowire single photon detectors, bolometers, transition edge sensors and even for quantum current standard employing the QPS phenomenon.
RESUMO
The quality of as-synthesized monolayers plays a significant role in atomically thin semiconducting transition metal dichalcogenides (TMDCs) to determine the electronic and optical properties. For designing optoelectronic devices, exploring the effect of processing parameters on optical properties is a prerequisite. In this view, we present the influence of processing parameters on the lattice and quasiparticle dynamics of monolayer MoSe2. The lab-built chemical vapour deposition (CVD) setup is used to synthesize monolayer MoSe2 flakes with varying shapes, including sharp triangle (ST), truncated triangle (TT), hexagon, and rough edge circle (REC). In particular, the features of as-synthesized monolayer MoSe2 flakes are examined using Raman and photoluminescence (PL) spectroscopy. Raman spectra reveal that the frequency difference between the A1g and E1 2g peaks is >45 cm-1 in all the monolayer samples. PL spectroscopy also shows that the synthesized MoSe2 flakes are monolayer in nature with a direct band gap in the range of 1.50-1.58 eV. Furthermore, the variation in the direct band gap is analyzed using the spectral weight of quasiparticles in PL emission, where the intensity ratio {I(A0)/I(A-)} and trion binding energy are found to be â¼1.1-5.0 and â¼23.1-47.5 meV in different monolayer MoSe2 samples. Hence, these observations manifest that the processing parameters make a substantial contribution in tuning the vibrational and excitonic properties.
RESUMO
[This corrects the article DOI: 10.1021/acsomega.0c02132.].
RESUMO
An attempt has been made to understand the thermodynamic mechanism study of the low-pressure chemical vapor deposition (LPCVD) process during single-layer graphene (SLG) growth as it is the most debatable part of the CVD process. The intensive studies are being carried out worldwide to enhance the quality of LPCVD-grown graphene up to the level of mechanically exfoliated SLG. The mechanism and processes have been discussed earlier by several research groups during the variation in different parameters. However, the optimization and mechanism involvement due to individual partial pressure-based effects has not been elaborately discussed so far. Hence, we have addressed this issue in detail including thermodynamics of the growth process and tried to establish the effect of the partial pressures of individual gases during the growth of SLG. Also, optical microscopy, Raman spectroscopy, and atomic force microscopy (AFM) have been performed to determine the quality of SLG. Furthermore, nucleation density has also been estimated to understand a plausible mechanism of graphene growth based on partial pressure. Moreover, the field-effect transistor (FET) device has been fabricated to determine the electrical properties of SLG, and the estimated mobility has been found as â¼2595 cm2 V-1 s-1 at n = -2 × 1012 cm-2. Hence, the obtained results trigger that the partial pressure is an important parameter for the growth of SLG and having various potential applications in high-performance graphene FET (GFET) devices.