Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018898

RESUMO

Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.


Assuntos
Coinfecção , Vírus de Insetos , Vírus de RNA , Tephritidae , Humanos , Animais , Insetos
2.
Genomics ; 114(5): 110441, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931274

RESUMO

Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.


Assuntos
Mariposas , Animais , Genoma , Mariposas/genética , Feromônios
3.
Bull Entomol Res ; 112(2): 236-242, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34496982

RESUMO

Invasive Tephritid fruit flies are a global threat to both agriculture and horticulture industries. Biosecurity has played a critical role in reducing their damage but becomes more and more challenging after several key chemical pesticides were banned or withdrawn for health or environmental reasons. This has led to non-chemical approaches including heat and cold treatments being broadly utilized to get rid of fruit fly infestation. However, the molecular mechanisms to kill the flies underlying these stressors are not clear yet. This knowledge will certainly help refine current post-harvest treatment strategies and develop more efficient, cost-effective and environmentally friendly approaches for fruit fly management. Previously, the molecular response of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) to heat was examined thoroughly, in which 31 key genes were identified with significant changes in expression levels and their high-resolution expression timeline was constructed across 11 timepoints. However, whether these candidate genes respond to cold in the same way was unknown. Here, a temperature bioassay was conducted and the expression profiles of these genes were investigated across the same 11 timepoints using cold treatment. The results showed that most of candidate genes exhibited divergent expression profiles compared to heat treatment, suggesting that the fly molecular response to cold may be different from those to heat. This study provides new knowledge of Tephritid fruit fly response to cold at a molecular level, which could aid in improving current fruit fly management and facilitate the development of new strategies to control this serious horticultural insect pest.


Assuntos
Ceratitis capitata , Animais , Temperatura Baixa , Temperatura Alta
4.
Plant J ; 101(5): 1170-1184, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31651067

RESUMO

Three subtypes of C4 photosynthesis exist (NADP-ME, NAD-ME and PEPCK), each known to be beneficial under specific environmental conditions. However, the influence of photosynthetic subtype on transcriptomic plasticity, as well as the genes underpinning this variability, remain largely unknown. Here, we comprehensively investigate the responses of six C4 grass species, spanning all three C4 subtypes, to two controlled environmental stresses: low light (200 µmol m-2  sec-1 ) and glacial CO2 (subambient; 180 ppm). We identify a susceptibility within NADP-ME species to glacial CO2 . Notably, although glacial CO2 phenotypes could be tied to C4 subtype, biochemical and transcriptomic responses to glacial CO2 were largely species specific. Nevertheless, we were able to identify subtype specific subsets of significantly differentially expressed transcripts which link resource acquisition and allocation to NADP-ME species susceptibility to glacial CO2 . Here, low light phenotypes were comparable across species with no clear subtype response, while again, transcriptomic responses to low light were largely species specific. However, numerous functional similarities were noted within the transcriptomic responses to low light, suggesting these responses are functionally relatively conserved. Additionally, PEPCK species exhibited heightened regulation of transcripts related to metabolism in response to both stresses, likely tied to their C4 metabolic pathway. These results highlight the influence that both species and subtype can have on plant responses to abiotic stress, building on our mechanistic understanding of acclimation within C4 grasses and highlighting avenues for future crop improvements.


Assuntos
Dióxido de Carbono/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Poaceae/genética , Transcriptoma , Aclimatação , Perfilação da Expressão Gênica , Luz , Redes e Vias Metabólicas , Fenótipo , Fosfoenolpiruvato Carboxilase/genética , Fotossíntese , Poaceae/enzimologia , Poaceae/fisiologia , Poaceae/efeitos da radiação , Especificidade da Espécie
5.
BMC Genomics ; 21(1): 259, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228451

RESUMO

BACKGROUND: The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. RESULTS: Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. CONCLUSIONS: The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.


Assuntos
Tephritidae/genética , Cromossomo Y/genética , Cromossomo Y/metabolismo , Animais , Feminino , Genoma de Inseto/genética , Masculino , Reação em Cadeia da Polimerase
6.
BMC Plant Biol ; 20(1): 548, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287718

RESUMO

BACKGROUND: Prolonged mechanical stress (MS) causes thigmomorphogenesis, a stress acclimation response associated with increased disease resistance. What remains unclear is if; 1) plants pre-exposed to a short period of repetitive MS can prime defence responses upon subsequent challenge with necrotrophic pathogens, 2) MS mediates plant immunity via jasmonic acid (JA) signalling, and 3) a short period of repetitive MS can cause long-term changes in gene expression resembling a stress-induced memory. To address these points, 10-days old juvenile Arabidopsis seedlings were mechanically stressed for 7-days using a soft brush and subsequently challenged with the necrotrophic pathogens, Alternaria brassicicola, and Botrytis cinerea. Here we assessed how MS impacted structural cell wall appositions, disease symptoms and altered gene expression in response to infection. RESULTS: The MS-treated plants exhibited enhanced cell wall appositions and jasmonic acid (JA) accumulation that correlated with a reduction in disease progression compared to unstressed plants. The expression of genes involved in JA signalling, callose deposition, peroxidase and phytoalexin biosynthesis and reactive oxygen species detoxification were hyper-induced 4-days post-infection in MS-treated plants. The loss-of-function in JA signalling mediated by the JA-insensitive coronatine-insensitive 1 (coi1) mutant impaired the hyper-induction of defense gene expression and promoted pathogen proliferation in MS-treated plants subject to infection. The basal expression level of PATHOGENESIS-RELATED GENE 1 and PLANT DEFENSIN 1.2 defense marker genes were constitutively upregulated in rosette leaves for 5-days post-MS, as well as in naïve cauline leaves that differentiated from the inflorescence meristem well after ceasing MS. CONCLUSION: This study reveals that exposure of juvenile Arabidopsis plants to a short repetitive period of MS can alter gene expression and prime plant resistance upon subsequent challenge with necrotrophic pathogens via the JA-mediated COI1 signalling pathway. MS may facilitate a stress-induced memory to modulate the plant's response to future stress encounters. These data advance our understanding of how MS primes plant immunity against necrotrophic pathogens and how that could be utilised in sustainable agricultural practices.


Assuntos
Arabidopsis/genética , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/genética , Plântula/genética , Alternaria/fisiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Modelos Genéticos , Mutação , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Ácido Salicílico/metabolismo , Plântula/metabolismo , Plântula/microbiologia , Estresse Mecânico
7.
BMC Genet ; 21(Suppl 2): 132, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339498

RESUMO

BACKGROUND: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. RESULTS: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. CONCLUSION: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes.


Assuntos
Fotoperíodo , Comportamento Sexual Animal , Tephritidae/classificação , Tephritidae/fisiologia , Animais , Cruzamentos Genéticos , Feminino , Ligação Genética , Hibridização Genética , Padrões de Herança , Masculino , Fenótipo
8.
Mol Ecol ; 27(1): 167-181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134741

RESUMO

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.


Assuntos
Agricultura , Evolução Biológica , Mariposas/fisiologia , Alelos , Animais , Estudos de Associação Genética , Loci Gênicos , Marcadores Genéticos , Variação Genética , Genoma de Inseto , Haplótipos/genética , Resistência a Inseticidas/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Polimorfismo de Nucleotídeo Único/genética , Piretrinas/toxicidade , Seleção Genética , Análise de Sequência de DNA
9.
Photosynth Res ; 138(2): 233-248, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30078073

RESUMO

Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary 'path to C4' and improve C4 photosynthesis.


Assuntos
Malato Desidrogenase/metabolismo , NAD/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Poaceae/fisiologia , Aminoácidos/metabolismo , Evolução Biológica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Folhas de Planta
10.
Immunogenetics ; 68(9): 719-31, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27255409

RESUMO

Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central bearded dragon lizard, Pogona vitticeps, in its genome assembly. To determine the complete nucleotide sequences of key interleukin genes, we constructed full-length transcripts, using the Trinity platform, from short paired-end read RNA sequences from stimulated spleen cells. De novo transcript reconstruction and analysis allowed us to identify interleukin genes that are missing from the published P. vitticeps assembly. Identification of key cytokines in P. vitticeps will provide insight into the essential molecular mechanisms and evolution of interleukin gene families and allow for characterization of the immune response in a lizard for comparison with mammals.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interleucinas/genética , Lagartos/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Homologia de Sequência de Aminoácidos , Software
11.
BMC Genomics ; 16: 255, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25880816

RESUMO

BACKGROUND: Blowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction. RESULTS: Representative proteins from all chemosensory gene families essential in insect olfaction were identified in the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors, 28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97 candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified. Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon dioxide detection were also amongst the identified proteins. CONCLUSIONS: This research provides a comprehensive novel resource that will be fundamental for future studies regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species comparisons.


Assuntos
Antenas de Artrópodes/metabolismo , Dípteros/genética , Proteínas de Insetos/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Dípteros/metabolismo , Drosophila/genética , Drosophila/metabolismo , Feminino , Genoma de Inseto , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/genética , Receptores Odorantes/genética , Alinhamento de Sequência , Olfato/genética
12.
Bioinformatics ; 30(19): 2723-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24919879

RESUMO

MOTIVATION: Bioinformatics tools, such as assemblers and aligners, are expected to produce more accurate results when given better quality sequence data as their starting point. This expectation has led to the development of stand-alone tools whose sole purpose is to detect and remove sequencing errors. A good error-correcting tool would be a transparent component in a bioinformatics pipeline, simply taking sequence data in any of the standard formats and producing a higher quality version of the same data containing far fewer errors. It should not only be able to correct all of the types of errors found in real sequence data (substitutions, insertions, deletions and uncalled bases), but it has to be both fast enough and scalable enough to be usable on the large datasets being produced by current sequencing technologies, and work on data derived from both haploid and diploid organisms. RESULTS: This article presents Blue, an error-correction algorithm based on k-mer consensus and context. Blue can correct substitution, deletion and insertion errors, as well as uncalled bases. It accepts both FASTQ and FASTA formats, and corrects quality scores for corrected bases. Blue also maintains the pairing of reads, both within a file and between pairs of files, making it compatible with downstream tools that depend on read pairing. Blue is memory efficient, scalable and faster than other published tools, and usable on large sequencing datasets. On the tests undertaken, Blue also proved to be generally more accurate than other published algorithms, resulting in more accurately aligned reads and the assembly of longer contigs containing fewer errors. One significant feature of Blue is that its k-mer consensus table does not have to be derived from the set of reads being corrected. This decoupling makes it possible to correct one dataset, such as small set of 454 mate-pair reads, with the consensus derived from another dataset, such as Illumina reads derived from the same DNA sample. Such cross-correction can greatly improve the quality of small (and expensive) sets of long reads, leading to even better assemblies and higher quality finished genomes. AVAILABILITY AND IMPLEMENTATION: The code for Blue and its related tools are available from http://www.bioinformatics.csiro.au/Blue. These programs are written in C# and run natively under Windows and under Mono on Linux.


Assuntos
Algoritmos , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Animais , DNA Bacteriano/análise , Bases de Dados Genéticas , Genoma , Genoma Bacteriano , Genoma Humano , Humanos , Ploidias , Reprodutibilidade dos Testes , Deleção de Sequência , Software
13.
Mol Ecol ; 24(19): 4901-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26331997

RESUMO

Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.


Assuntos
Migração Animal , Voo Animal , Genoma de Inseto , Mariposas/genética , Transcriptoma , Adaptação Fisiológica/genética , Animais , China , Genética Populacional , Grécia , Espécies Introduzidas , Mariposas/fisiologia , Fenótipo , Análise de Sequência de RNA
14.
BMC Genomics ; 15: 597, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027790

RESUMO

BACKGROUND: Chemosensory receptors including olfactory receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) play a central role in sensing chemical signals and guiding insect behaviours, and are potential target genes in insect pest control. The cotton bollworm Helicoverpa armigera is one of the most destructive pest species that can feed on over 200 different plant species. This diversity of host plants is likely linked to a complex chemosensory system. Here we built on previous work to characterize crucial chemosensory tissues linked to environmental interactions including larval antennae, larval mouthparts and larval fat bodies, as well as male and female adult heads, male and female adult tarsi, and female abdomens. RESULTS: Using transcriptome sequencing, Trinity RNA-seq assemblies and extensive manual curation, we identified a total of 91 candidate chemosensory receptors (60 candidate ORs, 10 GRs and 21 IRs). Thirty-five of these candidates present full-length transcripts. First, we performed in silico differential expression analysis on different sequenced tissues. Further, we created extensive expression profiles using reverse transcription (RT)-PCR on a variety of adult and larval stages. We found that the expression profile of HarmOR51 was limited to adult male antenna suggesting a role in mating that was further supported by a phylogenetic analysis clustering it into the pheromone receptor clade. HarmOR51 in calcium imaging analysis did not show responses to either of the two H. armigera sex pheromone components (Z9-16:Ald or Z11-16:Ald) inviting a future detailed study. In addition, we found four novel HarmORs (OR1, 53, 54 and 58) that appeared to be larvae-antennal specific. Finally, our expression profiling showed that four "divergent" HarmIRs (IR2, 7d.1, 7d.2 and 7d.3) were expressed in both adult and larval antennae, suggesting a functional divergence from their Drosophila homologues. CONCLUSIONS: This study explored three chemoreceptor superfamily genes using a curated transcriptomic approach coupled with extensive expression profiling and a more limited functional characterization. Our results have now provided an extensive resource for investigating the chemoreceptor complement of this insect pest, and meanwhile allow for targeted experiments to identify potential molecular targets for pest control and to investigate insect-plant interactions.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Odorantes/genética , Receptores de Feromônios/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Feminino , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Mariposas/crescimento & desenvolvimento , Filogenia , Ligação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Receptores Ionotrópicos de Glutamato/classificação , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Receptores de Feromônios/classificação , Receptores de Feromônios/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma
15.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24920480

RESUMO

The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.


Assuntos
Borboletas/genética , Genoma de Inseto , Proteínas de Insetos/genética , Animais , Borboletas/metabolismo , Evolução Molecular , Proteínas de Insetos/metabolismo , Desequilíbrio de Ligação , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA , Asas de Animais/metabolismo
16.
Nat Microbiol ; 8(9): 1668-1681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550506

RESUMO

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.


Assuntos
Armillaria , Armillaria/genética , Armillaria/metabolismo , Biomassa , Transferência Genética Horizontal , Ecossistema , Plantas
17.
BMC Genomics ; 13: 288, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747837

RESUMO

BACKGROUND: Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. RESULTS: We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern "switch gene" optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. CONCLUSIONS: This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.


Assuntos
Borboletas/genética , Perfilação da Expressão Gênica , Pigmentação/genética , Animais , Borboletas/crescimento & desenvolvimento , Borboletas/metabolismo , Enzimas/metabolismo , Variação Genética , Genômica , Melaninas/metabolismo , Fenotiazinas/metabolismo , Asas de Animais/metabolismo
18.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35043183

RESUMO

Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.

19.
Pathogens ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35456102

RESUMO

The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.

20.
Bioinformatics ; 26(24): 3119-24, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20971988

RESUMO

MOTIVATION: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). RESULTS: We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. CONCLUSION: Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. AVAILABILITY AND IMPLEMENTATION: Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.


Assuntos
Biologia Computacional , Software , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Internet , Interferência de RNA , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA