Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 77(1): 180-188.e9, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630969

RESUMO

The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.


Assuntos
Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Morte Celular/fisiologia , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Potenciais da Membrana/fisiologia , Biossíntese de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia
2.
Mol Cell ; 64(2): 221-235, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768871

RESUMO

Autophagy is a potent cellular degradation pathway, and its activation needs to be tightly controlled. Cargo receptors mediate selectivity during autophagy by bringing cargo to the scaffold protein Atg11 and, in turn, to the autophagic machinery, including the central autophagy kinase Atg1. Here we show how selective autophagy is tightly regulated in space and time to prevent aberrant Atg1 kinase activation and autophagy induction. We established an induced bypass approach (iPass) that combines genetic deletion with chemically induced dimerization to evaluate the roles of Atg13 and cargo receptors in Atg1 kinase activation and selective autophagy progression. We show that Atg1 activation does not require cargo receptors, cargo-bound Atg11, or Atg13 per se. Rather, these proteins function in two independent pathways that converge to activate Atg1 at the vacuole. This pathway architecture underlies the spatiotemporal control of Atg1 kinase activity, thereby preventing inappropriate autophagosome formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Multimerização Proteica , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Mol Cell ; 53(3): 471-83, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24440502

RESUMO

Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Sequência Consenso , Membranas Intracelulares/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Fagossomos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
EMBO Rep ; 15(8): 862-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24968893

RESUMO

Autophagy is the major pathway for the delivery of cytoplasmic material to the vacuole or lysosome. Selective autophagy is mediated by cargo receptors, which link the cargo to the scaffold protein Atg11 and to Atg8 family proteins on the forming autophagosomal membrane. We show that the essential kinase Hrr25 activates the cargo receptor Atg19 by phosphorylation, which is required to link cargo to the Atg11 scaffold, allowing selective autophagy to proceed. We also find that the Atg34 cargo receptor is regulated in a similar manner, suggesting a conserved mechanism.


Assuntos
Caseína Quinase I/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Autofagia , Proteínas Relacionadas à Autofagia , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Receptores de Superfície Celular/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
5.
J Biol Chem ; 288(25): 17941-6, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23645666

RESUMO

In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Proteínas de Escherichia coli/genética , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC , Espectrometria de Fluorescência
6.
Mol Cell Oncol ; 5(6): e1526006, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525099

RESUMO

Studying the mechanism of autophagosome-vacuole fusion has proven difficult in live yeast cells. Developing a novel in vitro fusion assay, we identified Ykt6 as the missing R-SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) in this process and pinpoint the place of action of all four SNAREs involved. Parallel studies have confirmed our findings in other organisms.

7.
J Cell Biol ; 217(10): 3656-3669, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30097514

RESUMO

Autophagy mediates the bulk degradation of cytoplasmic material, particularly during starvation. Upon the induction of autophagy, autophagosomes form a sealed membrane around cargo, fuse with a lytic compartment, and release the cargo for degradation. The mechanism of autophagosome-vacuole fusion is poorly understood, although factors that mediate other cellular fusion events have been implicated. In this study, we developed an in vitro reconstitution assay that enables systematic discovery and dissection of the players involved in autophagosome-vacuole fusion. We found that this process requires the Atg14-Vps34 complex to generate PI3P and thus recruit the Ypt7 module to autophagosomes. The HOPS-tethering complex, recruited by Ypt7, is required to prepare SNARE proteins for fusion. Furthermore, we discovered that fusion requires the R-SNARE Ykt6 on the autophagosome, together with the Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. These findings shed new light on the mechanism of autophagosome-vacuole fusion and reveal that the R-SNARE Ykt6 is required for this process.


Assuntos
Autofagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fusão de Membrana , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Vacúolos/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
J Cell Biol ; 217(8): 2743-2763, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848619

RESUMO

The autophagy-related (Atg) proteins play a key role in the formation of autophagosomes, the hallmark of autophagy. The function of the cluster composed by Atg2, Atg18, and transmembrane Atg9 is completely unknown despite their importance in autophagy. In this study, we provide insights into the molecular role of these proteins by identifying and characterizing Atg2 point mutants impaired in Atg9 binding. We show that Atg2 associates to autophagosomal membranes through lipid binding and independently from Atg9. Its interaction with Atg9, however, is key for Atg2 confinement to the growing phagophore extremities and subsequent association of Atg18. Assembly of the Atg9-Atg2-Atg18 complex is important to establish phagophore-endoplasmic reticulum (ER) contact sites. In turn, disruption of the Atg2-Atg9 interaction leads to an aberrant topological distribution of both Atg2 and ER contact sites on forming phagophores, which severely impairs autophagy. Altogether, our data shed light in the interrelationship between Atg9, Atg2, and Atg18 and highlight the possible functional relevance of the phagophore-ER contact sites in phagophore expansion.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Cells ; 6(3)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703742

RESUMO

Autophagy is an intracellular process responsible for the degradation and recycling of cytoplasmic components. It selectively removes harmful cellular material and enables the cell to survive starvation by mobilizing nutrients via the bulk degradation of cytoplasmic components. While research over the last decades has led to the discovery of the key factors involved in autophagy, the pathway is not yet completely understood. The first studies of autophagy on a molecular level were conducted in the yeast Saccharomyces cerevisiae. Building up on these studies, many homologs have been found in higher eukaryotes. Yeast remains a highly relevant model organism for studying autophagy, with a wide range of established methods to elucidate the molecular details of the autophagy pathway. In this review, we provide an overview of methods to study both selective and bulk autophagy, including intermediate steps in the yeast Saccharomyces cerevisiae. We compare different assays, discuss their advantages and limitations and list potential applications.

10.
J Mol Biol ; 428(9 Pt A): 1725-41, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059781

RESUMO

Autophagy is an intracellular degradation pathway highly conserved in eukaryotic species. It is characterized by selective or bulk trafficking of cytosolic structures-ranging from single proteins to cell organelles-to the vacuole or a lysosome, in which the autophagic cargo is degraded. Autophagy fulfils a large set of roles, including nutrient mobilization in starvation conditions, clearance of protein aggregates and host defence against intracellular pathogens. Not surprisingly, autophagy has been linked to several human diseases, among them neurodegenerative disorders and cancer. Autophagy is coordinated by the action of the Atg1/ULK1 kinase, which is the target of several important stress signaling cascades. In this review, we will discuss the available information on both upstream regulation and downstream effectors of Atg1/ULK1, with special focus on reported and proposed kinase substrates.


Assuntos
Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Regulação da Expressão Gênica , Transdução de Sinais , Eucariotos
11.
Autophagy ; 10(7): 1338-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24905091

RESUMO

The conserved Ser/Thr kinase Atg1/ULK1 plays a crucial role in the regulation of autophagy. However, only very few Atg1 targets have been identified, impeding elucidation of the mechanisms by which Atg1 regulates autophagy. In our study, we determined the Saccharomyces cerevisiae Atg1 consensus phosphorylation sequence using a peptide array-based approach. Among proteins containing this sequence we identified Atg9, another essential component of the autophagic machinery. We showed that phosphorylation of Atg9 by Atg1 is required for phagophore elongation, shedding light on the mechanism by which Atg1 regulates early steps of autophagy.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas Relacionadas à Autofagia , Modelos Biológicos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA