Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 153: 7-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081196

RESUMO

A transmission-blocking vaccine targeting the sexual stages of Plasmodium species could play a key role in eradicating malaria. Multiple studies have identified the P. falciparum proteins Pfs25 and Pfs48/45 as prime targets for transmission-blocking vaccines. Although significant advances have been made in recombinant expression of these antigens, they remain difficult to produce at large scale and lack strong immunogenicity as subunit antigens. We linked a self-assembling protein, granule lattice protein 1 (Grl1p), from the ciliated protozoan, Tetrahymena thermophila, to regions of the ectodomains of either Pfs25 or Pfs48/45. We found that resulting protein chimera could be produced in E. coli as nanoparticles that could be readily purified in soluble form. When produced in the E. coli SHuffle strain, fusion to Grl1p dramatically increased solubility of target antigens while at the same time directing the formation of particles with diameters centering on 38 and 25 nm depending on the antigen. In a number of instances, co-expression with chaperone proteins and induction at a lower temperature further increased expression and solubility. Based on Western blotting and ELISA analysis, Pfs25 and Pfs48/45 retained their transmission-blocking epitopes within E. coli-derived particles, and the particles themselves elicited strong antibody responses in rabbits when given with an aluminum-based adjuvant. Antibodies against Pfs25-containing nanoparticles blocked parasite transmission in standard membrane-feeding assays. In conclusion, fusion to Grl1p can act as a solubility enhancer for proteins with limited solubility while retaining correct folding, which may be useful for applications such as the production of vaccines and other biologics.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Proteínas de Ligação ao Cálcio/genética , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana/genética , Plasmodium falciparum/química , Proteínas de Protozoários/genética , Tetrahymena thermophila/química , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Bioensaio , Proteínas de Ligação ao Cálcio/administração & dosagem , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imunogenicidade da Vacina , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Mosquitos Vetores/parasitologia , Nanopartículas , Plasmodium falciparum/imunologia , Dobramento de Proteína , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetrahymena thermophila/imunologia
2.
MAbs ; 10(4): 636-650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494279

RESUMO

Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.


Assuntos
Anticorpos Monoclonais , Descoberta de Drogas/métodos , Canal de Potássio Kv1.3/antagonistas & inibidores , Animais , Camelídeos Americanos , Galinhas , Humanos , Proteínas Recombinantes , Tetrahymena thermophila
3.
New Phytol ; 175(1): 51-58, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17547666

RESUMO

* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.


Assuntos
Cádmio/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Thlaspi/metabolismo , Zinco/metabolismo , Radioisótopos de Cádmio , Cinética , Folhas de Planta/metabolismo
4.
Biochem Biophys Res Commun ; 363(1): 51-6, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17826738

RESUMO

We report here the first purification of a P(1B) type ATPase, a group of transporters that occurs in bacteria, plants and animals incl. humans, from a eukaryotic organism in native state. TcHMA4 is a P(1B) type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn-activated ATPase activity after reconstitution into lipid vesicles, showing that it was in its native state. Gels of crude root extract and of the purified protein revealed TcHMA4-specific bands of about 50 and 60kDa, respectively, while the TcHMA4 mRNA predicts a single protein with a size of 128kDa. This indicates the occurrence of post-translational processing; the properties of the two bands were characterised by their activity and binding properties.


Assuntos
Adenosina Trifosfatases/química , Cádmio/química , Extratos Vegetais/química , Proteínas de Plantas/química , Bombas de Próton/química , Thlaspi/enzimologia , Zinco/química , Ativação Enzimática , Especificidade por Substrato , Regulação para Cima
5.
Plant Physiol ; 136(3): 3814-23, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15516513

RESUMO

Thlaspi caerulescens is a heavy metal hyperaccumulator plant species that is able to accumulate extremely high levels of zinc (Zn) and cadmium (Cd) in its shoots (30,000 microg g(-1) Zn and 10,000 microg g(-1) Cd), and has been the subject of intense research as a model plant to gain a better understanding of the mechanisms of heavy metal hyperaccumulation and tolerance and as a source of genes for developing plant species better suited for the phytoremediation of metal-contaminated soils. In this study, we report on the results of a yeast (Saccharomyces cerevisae) complementation screen aimed at identifying candidate heavy metal tolerance genes in T. caerulescens. A number of Thlaspi genes that conferred Cd tolerance to yeast were identified, including possible metal-binding ligands from the metallothionein gene family, and a P-type ATPase that is a member of the P1B subfamily of purported heavy metal-translocating ATPases. A detailed characterization of the Thlaspi heavy metal ATPase, TcHMA4, demonstrated that it mediates yeast metal tolerance via active efflux of a number of different heavy metals (Cd, Zn, lead [Pb], and copper [Cu]) out of the cell. However, in T. caerulescens, based on differences in tissue-specific and metal-responsive expression of this transporter compared with its homolog in Arabidopsis (Arabidopsis thaliana), we suggest that it may not be involved in metal tolerance. Instead, we hypothesize that it may play a role in xylem loading of metals and thus could be a key player in the hyperaccumulation phenotype expressed in T. caerulescens. Additionally, evidence is presented showing that the C terminus of the TcHMA4 protein, which contains numerous possible heavy metal-binding His and Cys repeats residues, participates in heavy metal binding. When partial peptides from this C-terminal domain were expressed in yeast, they conferred an extremely high level of Cd tolerance and Cd hyperaccumulation. The possibilities for enhancing the metal tolerance and phytoremediation potential of higher plants via expression of these metal-binding peptides are also discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Genes de Plantas/genética , Metais Pesados/metabolismo , Thlaspi/genética , Thlaspi/metabolismo , Sequência de Aminoácidos , Expressão Gênica , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA