Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 52(1): 4-21, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37993417

RESUMO

Several cancer core regulatory circuitries (CRCs) depend on the sustained generation of DNA accessibility by SWI/SNF chromatin remodelers. However, the window when SWI/SNF is acutely essential in these settings has not been identified. Here we used neuroblastoma (NB) cells to model and dissect the relationship between cell-cycle progression and SWI/SNF ATPase activity. We find that SWI/SNF inactivation impairs coordinated occupancy of non-pioneer CRC members at enhancers within 1 hour, rapidly breaking their autoregulation. By precisely timing inhibitor treatment following synchronization, we show that SWI/SNF is dispensable for survival in S and G2/M, but becomes acutely essential only during G1 phase. We furthermore developed a new approach to analyze the oscillating patterns of genome-wide DNA accessibility across the cell cycle, which revealed that SWI/SNF-dependent CRC binding sites are enriched at enhancers with peak accessibility during G1 phase, where they activate genes involved in cell-cycle progression. SWI/SNF inhibition strongly impairs G1-S transition and potentiates the ability of retinoids used clinically to induce cell-cycle exit. Similar cell-cycle effects in diverse SWI/SNF-addicted settings highlight G1-S transition as a common cause of SWI/SNF dependency. Our results illustrate that deeper knowledge of the temporal patterns of enhancer-related dependencies may aid the rational targeting of addicted cancers.


Cancer cells driven by runaway transcription factor networks frequently depend on the cellular machinery that promotes DNA accessibility. For this reason, recently developed small molecules that impair SWI/SNF (or BAF) chromatin remodeling activity have been under active evaluation as anti-cancer agents. However, exactly when SWI/SNF activity is essential in dependent cancers has remained unknown. By combining live-cell imaging and genome-wide profiling in neuroblastoma cells, Cermakova et al. discover that SWI/SNF activity is needed for survival only during G1 phase of the cell cycle. The authors reveal that in several cancer settings, dependency on SWI/SNF arises from the need to reactivate factors involved in G1-S transition. Because of this role, authors find that SWI/SNF inhibition potentiates cell-cycle exit by retinoic acid.


Assuntos
Fase G1 , Neoplasias , Fatores de Transcrição , Humanos , Ciclo Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Elementos Facilitadores Genéticos
2.
Proc Natl Acad Sci U S A ; 120(6): e2212578120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724256

RESUMO

Developmental potential is progressively restricted after germ layer specification during gastrulation. However, cranial neural crest cells challenge this paradigm, as they develop from anterior ectoderm, yet give rise to both ectodermal derivatives of the peripheral nervous system and ectomesenchymal bone and cartilage. How cranial neural crest cells differentiate into multiple lineages is poorly understood. Here, we demonstrate that cranial neural crest cells possess a transient state of increased chromatin accessibility. We profile the spatiotemporal emergence of premigratory neural crest and find evidence of lineage bias toward either a neuronal or ectomesenchymal fate, with each expressing distinct factors from earlier stages of development. We identify the miR-302 miRNA family to be highly expressed in cranial neural crest cells and genetic deletion leads to precocious specification of the ectomesenchymal lineage. Loss of mir-302 results in reduced chromatin accessibility in the neuronal progenitor lineage of neural crest and a reduction in peripheral neuron differentiation. Mechanistically, we find that mir-302 directly targets Sox9 to slow the timing of ectomesenchymal neural crest specification and represses multiple genes involved in chromatin condensation to promote accessibility required for neuronal differentiation. Our findings reveal a posttranscriptional mechanism governed by miRNAs to expand developmental potential of cranial neural crest.


Assuntos
MicroRNAs , Crista Neural , Diferenciação Celular/genética , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Processamento Pós-Transcricional do RNA
3.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066028

RESUMO

Neural tube closure is a critical early step in central nervous system development that requires precise control of metabolism to ensure proper cellular proliferation and differentiation. Dysregulation of glucose metabolism during pregnancy has been associated with neural tube closure defects (NTDs) in humans suggesting that the developing neuroepithelium is particularly sensitive to metabolic changes. However, it remains unclear how metabolic pathways are regulated during neurulation. Here, we used single-cell mRNA-sequencing to analyze expression of genes involved in metabolism of carbon, fats, vitamins, and antioxidants during neurulation in mice and identify a coupling of glycolysis and cellular proliferation to ensure proper neural tube closure. Using loss of miR-302 as a genetic model of cranial NTD, we identify misregulated metabolic pathways and find a significant upregulation of glycolysis genes in embryos with NTD. These findings were validated using mass spectrometry-based metabolite profiling, which identified increased glycolytic and decreased lipid metabolites, consistent with a rewiring of central carbon traffic following loss of miR-302. Predicted miR-302 targets Pfkp, Pfkfb3, and Hk1 are significantly upregulated upon NTD resulting in increased glycolytic flux, a shortened cell cycle, and increased proliferation. Our findings establish a critical role for miR-302 in coordinating the metabolic landscape of neural tube closure.


Assuntos
Ciclo Celular , Glicólise , MicroRNAs/metabolismo , Tubo Neural/metabolismo , Neurulação , Animais , Células Cultivadas , Hexoquinase/genética , Hexoquinase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Tubo Neural/embriologia , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo
4.
J Cell Mol Med ; 23(3): 2103-2114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30663210

RESUMO

We engineered and employed a chaperone-like amyloid-binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross-reacted with amyloid beta-peptide (Aß42) protofibrils, but not with Aß40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1-hIAPP complex cross-react with Aß42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation-specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation-sensitive and sequence-independent and can target more than one type of protofibril species.


Assuntos
Peptídeos beta-Amiloides/imunologia , Amiloide/imunologia , Anticorpos Monoclonais/imunologia , Fragmentos de Peptídeos/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/imunologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Camundongos , Nucleobindinas/imunologia , Nucleobindinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Células Piramidais/imunologia , Células Piramidais/metabolismo
5.
Stem Cells ; 34(7): 1985-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27066911

RESUMO

The embryonic stem cell cycle (ESCC) and let-7 families of miRNAs function antagonistically in the switch between mouse embryonic stem cell self-renewal and somatic differentiation. Here, we report that the human ESCC miRNA miR-372 and let-7 act antagonistically in germline differentiation from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). hESC and iPSC-derived primordial germ cell-like cells (PGCLCs) expressed high levels of miR-372 and conversely, somatic cells expressed high levels of let-7. Manipulation of miRNA levels by introduction of miRNA mimics or knockdown with miRNA sponges demonstrated that miR-372 promotes whereas let-7 antagonizes PGCLC differentiation. Knockdown of the individual miR-372 targets SMARCC1, MECP2, CDKN1, RBL2, RHOC, and TGFBR2 increased PGCLC production, whereas knockdown of the let-7 targets CMYC and NMYC suppressed PGCLC differentiation. These findings uncover a miR-372/let-7 axis regulating human primordial germ cell (PGC) specification. Stem Cells 2016;34:1985-1991.


Assuntos
Linhagem da Célula , Células Germinativas/citologia , Células Germinativas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/genética , Biomarcadores/metabolismo , Humanos , MicroRNAs/genética
6.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282363

RESUMO

The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state. Impact Statement: The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.

8.
iScience ; 27(3): 109122, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38414863

RESUMO

During aging, blood cell production becomes dominated by a limited number of variant hematopoietic stem cell (HSC) clones. Differentiated progeny of variant HSCs are thought to mediate the detrimental effects of such clonal hematopoiesis on organismal health, but the mechanisms are poorly understood. While somatic mutations in DNA methyltransferase 3A (DNMT3A) frequently drive clonal dominance, the aging milieu also likely contributes. Here, we examined in mice the interaction between high-fat diet (HFD) and reduced DNMT3A in hematopoietic cells; strikingly, this combination led to weight gain. HFD amplified pro-inflammatory pathways and upregulated inflammation-associated genes in mutant cells along a pro-myeloid trajectory. Aberrant DNA methylation during myeloid differentiation and in response to HFD led to pro-inflammatory activation and maintenance of stemness genes. These findings suggest that reduced DNMT3A in hematopoietic cells contributes to weight gain, inflammation, and metabolic dysfunction, highlighting a role for DNMT3A loss in the development of metabolic disorders.

9.
Development ; 137(20): 3469-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20843860

RESUMO

In bilaterians, establishing the correct spatial positioning of structures along the dorsoventral (DV) axis is essential for proper embryonic development. Insects such as Drosophila rely on the Dorsal activity gradient and Bone morphogenetic protein (BMP) signaling to establish cell fates along the DV axis, leading to the distinction between tissues such as mesoderm, neurogenic ectoderm and dorsal ectoderm in the developing embryo. Subsequently, the ventral midline plays a more restricted role in DV patterning by establishing differential cell fates in adjacent regions of the neurogenic ectoderm. In this study, we examine the function of the ventral midline and the midline-associated gene single-minded (Ph-sim) in the amphipod crustacean Parhyale hawaiensis. Remarkably, we found that Ph-sim and the ventral midline play a central role in establishing proper fates along the entire DV axis in this animal; laser ablation of midline cells causes a failure to form neurogenic ectoderm and Ph-sim RNAi results in severely dorsalized embryos lacking both neurogenic ectoderm and the appendage-bearing lateral ectoderm. Furthermore, we hypothesize that this role of midline cells was present in the last common ancestor of crustaceans and insects. We predict that the transition to a Dorsal-dependent DV patterning system in the phylogenetically derived insect lineage leading to Drosophila has led to a more restricted role of the ventral midline in patterning the DV axis of these insects.


Assuntos
Anfípodes/embriologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/fisiologia , Ectoderma/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Fluorescência , Terapia a Laser , Interferência de RNA
10.
Birth Defects Res ; 115(19): 1785-1808, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37066622

RESUMO

Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.


Assuntos
Diabetes Mellitus , Neoplasias Pancreáticas , Animais , Epigênese Genética/genética , RNA não Traduzido/genética , Pâncreas , Neoplasias Pancreáticas/genética
11.
Neural Regen Res ; 18(10): 2141-2146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056121

RESUMO

Type 2 diabetes mellitus patients have a markedly higher risk of developing dementia. While multiple factors contribute to this predisposition, one of these involves the increased secretion of amylin, or islet amyloid polypeptide, that accompanies the pathophysiology of type 2 diabetes mellitus. Islet amyloid polypeptide accumulation has undoubtedly been implicated in various forms of dementia, including Alzheimer's disease and vascular dementia, but the exact mechanisms underlying islet amyloid polypeptide's causative role in dementia are unclear. In this review, we have summarized the literature supporting the various mechanisms by which islet amyloid polypeptide accumulation may cause neuronal damage, ultimately leading to the clinical symptoms of dementia. We discuss the evidence for islet amyloid polypeptide deposition in the brain, islet amyloid polypeptide interaction with other amyloids implicated in neurodegeneration, neuroinflammation caused by islet amyloid polypeptide deposition, vascular damage induced by islet amyloid polypeptide accumulation, and islet amyloid polypeptide-induced cytotoxicity. There are very few therapies approved for the treatment of dementia, and of these, clinical responses have been controversial at best. Therefore, investigating new, targetable pathways is vital for identifying novel therapeutic strategies for treating dementia. As such, we conclude this review by discussing islet amyloid polypeptide accumulation as a potential therapeutic target not only in treating type 2 diabetes mellitus but as a future target in treating or even preventing dementia associated with type 2 diabetes mellitus.

12.
Cancer Res ; 83(10): 1563-1572, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946612

RESUMO

Extensive studies have focused on the misregulation of individual miRNAs in cancer. More recently, mutations in the miRNA biogenesis and processing machinery have been implicated in several malignancies. Such mutations can lead to global miRNA misregulation, which may promote many of the well-known hallmarks of cancer. Interestingly, recent evidence also suggests that oncogenic Kristen rat sarcoma viral oncogene homolog (KRAS) mutations act in part by modulating the activity of members of the miRNA regulatory pathway. Here, we highlight the vital role mutations in the miRNA core machinery play in promoting malignant transformation. Furthermore, we discuss how mutant KRAS can simultaneously impact multiple steps of miRNA processing and function to promote tumorigenesis. Although the ability of KRAS to hijack the miRNA regulatory pathway adds a layer of complexity to its oncogenic nature, it also provides a potential therapeutic avenue that has yet to be exploited in the clinic. Moreover, concurrent targeting of mutant KRAS and members of the miRNA core machinery represents a potential strategy for treating cancer.


Assuntos
MicroRNAs , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Transformação Celular Neoplásica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
13.
Trends Endocrinol Metab ; 34(9): 539-553, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468429

RESUMO

Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.


Assuntos
Ácido Fólico , Defeitos do Tubo Neural , Humanos , Feminino , Gravidez , Ácido Fólico/metabolismo , Tubo Neural/metabolismo , Neurulação , Placenta/metabolismo , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle
14.
Dev Genes Evol ; 222(3): 139-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466422

RESUMO

The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.


Assuntos
Anfípodes/genética , Proteínas de Artrópodes/genética , Fatores de Transcrição/genética , Anfípodes/embriologia , Animais , Proteínas de Artrópodes/análise , Evolução Molecular , Perfilação da Expressão Gênica , Mesoderma/metabolismo , Placa Neural/metabolismo , Filogenia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
15.
Birth Defects Res ; 114(16): 983-1002, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365980

RESUMO

During embryonic development, cells gradually restrict their developmental potential as they exit pluripotency and differentiate into various cell types. The POU transcription factor Oct4 (encoded by Pou5f1) lies at the center of the pluripotency machinery that regulates stemness and differentiation in stem cells, and is required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Several studies have revealed that Oct4 and other stemness genes are also expressed in multipotent cell populations such as neural crest cells (NCCs), and are required to expand the NCC developmental potential. Transcriptional regulation of Oct4 has been studied extensively in stem cells during early embryonic development and reprogramming, but not in NCCs. Here, we review how Oct4 is regulated in pluripotent stem cells, and address some of the gaps in knowledge about regulation of the pluripotency network in NCCs.


Assuntos
Crista Neural , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/metabolismo , Gravidez
16.
Open Biol ; 12(9): 220135, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36128718

RESUMO

Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.


Assuntos
Diabetes Gestacional , Criança , Feminino , Humanos , Gravidez
17.
Adv Sci (Weinh) ; 9(34): e2202342, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257905

RESUMO

Type 2 diabetes mellitus (T2D) is a major public health concern and is characterized by sustained hyperglycemia due to insulin resistance and destruction of insulin-producing ß cells. One pathological hallmark of T2D is the toxic accumulation of human islet amyloid polypeptide (hIAPP) aggregates. Monomeric hIAPP is a hormone normally co-secreted with insulin. However, increased levels of hIAPP in prediabetic and diabetic patients can lead to the formation of hIAPP protofibrils, which are toxic to ß cells. Current therapies fail to address hIAPP aggregation and current screening modalities do not detect it. Using a stabilizing capping protein, monoclonal antibodies (mAbs) can be developed against a previously nonisolatable form of hIAPP protofibrils, which are protofibril specific and do not engage monomeric hIAPP. Shown here are two candidate mAbs that can detect hIAPP protofibrils in serum and hIAPP deposits in pancreatic islets in a mouse model of rapidly progressing T2D. Treatment of diabetic mice with the mAbs delays disease progression and dramatically increases overall survival. These results demonstrate the potential for using novel hIAPP protofibril-specific mAbs as a diagnostic screening tool for early detection of T2D, as well as therapeutically to preserve ß cell function and target one of the underlying pathological mechanisms of T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas
18.
Curr Opin Genet Dev ; 17(4): 300-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17627807

RESUMO

The evolution of wings and the adaptive advantage they provide have allowed insects to become one of the most evolutionarily successful groups on earth. The incredible diversity of their shape, size, and color patterns is a direct reflection of the important role wings have played in the radiation of insects. In this review, we highlight recent studies on both butterflies and Drosophila that have begun to uncover the types of genetic variations and developmental mechanisms that control diversity in wing color patterns. In butterflies, these analyses are now possible because of the recent development of a suite of genomic and functional tools, such as detailed linkage maps and transgenesis. In one such study, extensive linkage mapping in Heliconius butterflies has shown that surprisingly few, and potentially homologous, loci are responsible for several major pattern variations on the wings of these butterflies. Parallel work on a clade of Drosophila has uncovered how cis-regulatory changes of the same gene correlate with the repeated gain and loss of pigmented wing spots. Collectively, our understanding of formation and evolution of color pattern in insect wings is rapidly advancing because of these recent breakthroughs in several different fields.


Assuntos
Padronização Corporal/fisiologia , Borboletas/crescimento & desenvolvimento , Insetos/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Borboletas/embriologia , Borboletas/genética , Drosophila/embriologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Geografia , Insetos/embriologia , Insetos/genética , Modelos Genéticos , América do Sul , Asas de Animais/embriologia , Asas de Animais/metabolismo
19.
Genomics ; 95(5): 261-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20298775

RESUMO

Bacterial artificial chromosomes (BACs) are capable of propagating large fragments of DNA and have become an invaluable tool for studying genome biology. To fill a phylogenetic gap in available genomic sequence and to complement ongoing molecular and genetic studies, we have generated a BAC library for the marine amphipod crustacean, Parhyale hawaiensis. The library was generated from genomic DNA isolated from whole adult animals and comprises 129,024 individual clones. The median insert size is approximately 140 kb and the genomic coverage is approximately five genome equivalents. We have screened the Parhyale BAC library for developmentally relevant genes and characterized the genomic organization of four genes: a hedgehog ortholog, and three Pax3/7 paralogs. Preliminary analysis suggests that introns are larger and more prevalent in Parhyale than in other arthropods whose genomes have been sequenced, which may partly account for the large genome size in Parhyale.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Crustáceos/genética , Biblioteca Genômica , Fatores de Transcrição/genética , Animais
20.
Front Cell Neurosci ; 15: 648570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935652

RESUMO

Neural crest development involves a series of dynamic, carefully coordinated events that result in human disease when not properly orchestrated. Cranial neural crest cells acquire unique multipotent developmental potential upon specification to generate a broad variety of cell types. Studies of early mammalian neural crest and nervous system development often use the Cre-loxP system to lineage trace and mark cells for further investigation. Here, we carefully profile the activity of two common neural crest Cre-drivers at the end of neurulation in mice. RNA sequencing of labeled cells at E9.5 reveals that Wnt1-Cre2 marks cells with neuronal characteristics consistent with neuroepithelial expression, whereas Sox10-Cre predominantly labels the migratory neural crest. We used single-cell mRNA and single-cell ATAC sequencing to profile the expression of Wnt1 and Sox10 and identify transcription factors that may regulate the expression of Wnt1-Cre2 in the neuroepithelium and Sox10-Cre in the migratory neural crest. Our data identify cellular heterogeneity during cranial neural crest development and identify specific populations labeled by two Cre-drivers in the developing nervous system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA