Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638547

RESUMO

Cytochromes P450 (CYP) are one of the major xenobiotic metabolizing enzymes with increasing importance in pharmacogenetics. The CYP2C9 enzyme is responsible for the metabolism of a wide range of clinical drugs. More than sixty genetic variations have been identified in CYP2C9 with many demonstrating reduced activity compared to the wild-type (WT) enzyme. The CYP2C9*8 allele is predominantly found in persons of African ancestry and results in altered clearance of several drug substrates of CYP2C9. The X-ray crystal structure of CYP2C9*8, which represents an amino acid variation from arginine to histidine at position 150 (R150H), was solved in complex with losartan. The overall conformation of the CYP2C9*8-losartan complex was similar to the previously solved complex with wild type (WT) protein, but it differs in the occupancy of losartan. One molecule of losartan was bound in the active site and another on the surface in an identical orientation to that observed in the WT complex. However, unlike the WT structure, the losartan in the access channel was not observed in the *8 complex. Furthermore, isothermal titration calorimetry studies illustrated weaker binding of losartan to *8 compared to WT. Interestingly, the CYP2C9*8 interaction with losartan was not as weak as the CYP2C9*3 variant, which showed up to three-fold weaker average dissociation constant compared to the WT. Taken together, the structural and solution characterization yields insights into the similarities and differences of losartan binding to CYP2C9 variants and provides a useful framework for probing the role of amino acid substitution and substrate dependent activity.


Assuntos
Domínio Catalítico/genética , Citocromo P-450 CYP2C9/genética , Inativação Metabólica/genética , Losartan/metabolismo , Alelos , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Citocromo P-450 CYP2C9/metabolismo , Variação Genética/genética , Humanos , Inativação Metabólica/fisiologia , Conformação Proteica
2.
Mol Pharmacol ; 98(5): 529-539, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938720

RESUMO

The human CYP2C9 plays a crucial role in the metabolic clearance of a wide range of clinical therapeutics. The *2 allele is a prevalent genetic variation in CYP2C9 that is found in various populations. A marked reduction of catalytic activity toward many important drug substrates has been demonstrated by CYP2C9*2, which represents an amino acid variation at position 144 from arginine to cysteine. The crystal structure of CYP2C9*2 in complex with an antihypertensive drug losartan was solved using X-ray crystallography at 3.1-Å resolution. The Arg144Cys variation in the *2 complex disrupts the hydrogen-bonding interactions that were observed between the side chain of arginine and neighboring residues in the losartan complex of CYP2C9 and the wild-type (WT) ligand-free structure. The conformation of several secondary structural elements is affected, thereby altering the binding and orientation of drug and important amino acid side chains in the distal active site cavity. The new structure revealed distinct interactions of losartan in the compact active site of CYP2C9*2 and differed in occupancy at the other binding sites previously identified in the WT-losartan complex. Furthermore, the binding studies in solution using losartan illustrated lower activity of the CYP2C9*2 compared with the WT. Together, the findings yield valuable insights into the decreased hydroxylation activity of losartan in patients carrying CYP2C9*2 allele and provide a useful framework to investigate the effect of a single-nucleotide polymorphism that leads to altered metabolism of diverse drug substrates. SIGNIFICANCE STATEMENT: The *2 allele of the human drug-metabolizing enzyme CYP2C9 is found in different populations and results in significantly reduced activity toward various drug substrates. How the CYP2C9*2 variant induces altered drug metabolism is poorly understood given that the Arg144Cys variation is located far away from the active site. This work yield insight into the effect of distal variation using multitude of techniques that include X-ray crystallography, isothermal titration calorimetry, enzymatic characterization, and computational studies.


Assuntos
Citocromo P-450 CYP2C9/genética , Losartan/química , Polimorfismo de Nucleotídeo Único/genética , Alelos , Anti-Hipertensivos/química , Domínio Catalítico/genética , Humanos
3.
J Inorg Biochem ; 258: 112622, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852293

RESUMO

The human cytochrome P450 (CYP) 1, 2 and 3 families of enzymes are responsible for the biotransformation of a majority of the currently available pharmaceutical drugs. The highly polymorphic CYP2C9 predominantly metabolizes many drugs including anticoagulant S-warfarin, anti-hypertensive losartan, anti-diabetic tolbutamide, analgesic ibuprofen, etc. There are >80 single nucleotide changes identified in CYP2C9, many of which significantly alter the clearance of important drugs. Here we report the structural and biophysical analysis of two polymorphic variants, CYP2C9*14 (Arg125His) and CYP2C9*27 (Arg150Leu) complexed with losartan. The X-ray crystal structures of the CYP2C9*14 and *27 illustrate the binding of two losartan molecules, one in the active site near heme and another on the periphery. Both losartan molecules are bound in an identical conformation to that observed in the previously solved CYP2C9 wild-type complex, however, the number of losartan differs from the wild-type structure, which showed binding of three molecules. Additionally, isothermal titration calorimetry experiments reveal a lower binding affinity of losartan with *14 and *27 variants when compared to the wild-type. Overall, the results provide new insights into the effects of these genetic polymorphisms and suggests a possible mechanism contributing to reduced metabolic activity in patients carrying these alleles.


Assuntos
Citocromo P-450 CYP2C9 , Losartan , Losartan/química , Losartan/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/química , Humanos , Cristalografia por Raios X , Ligação Proteica
4.
Infect Genet Evol ; 8(4): 406-13, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17275421

RESUMO

CD40L is a type II membrane protein comprised of 261 amino acids. CD40L plays a crucial role in the immune system where it is primarily expressed on activated T cells and triggers immunoglobulin class switching. The genetic disease X-linked hypergammaglobulinemia (HIGM1, XHIGM or XHIM) is caused by mutations in the CD40L gene. Individuals with HIGM1 are susceptible to recurrent infections to pathogens and a relationship has been shown to exist with malaria [Sabeti, P., Usen, S., Farhadian, S., Jallow, M., Doherty, T., Newport, M., Pinder, M., Ward, R., Kwiatkowski, D., 2002a. CD40L association with protection from severe malaria. Genes Immun. 3, 286-291]. In this paper, we phylogenetically examine the promoter region of CD40L in primates and other mammals via phylogenetic shadowing. This analysis revealed several regions of the CD40L promoter that were highly constrained and thereby inferred to be functional. These constrained regions confirmed many known regulatory sites. In addition, a novel, highly constrained upstream region was also identified which had an NF-AT recognition motif. These analyses also showed that the different mammal groups do not share an exactly similar set of promoter binding sites and taxon-specific promoters have evolved.


Assuntos
Ligante de CD40/genética , Mamíferos/genética , Filogenia , Primatas/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA