Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 21(3): 377-403, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32415569

RESUMO

Cardiovascular diseases are a leading cause of death. Vascular surgery is mainly used to solve this problem. However, the generation of a functional and suitable substitute for small diameter (< 6 mm) displacement is challengeable. Moreover, synthetic prostheses, made of polyethylene terephthalate and extended polytetrafluoroethylene show have shown insufficient performance. Therefore, the challenges dominating the use of autografts have prevented their efficient use. Tissue engineering is highlighted in regenerative medicine perhaps in aiming to address the issue of end-stage organ failure. While organs and complex tissues require the vascular supply to support the graft survival and render the bioartificial organ role, vascular tissue engineering has shown to be a hopeful method for cell implantation by the production of tissues in vitro. Bioreactors are a salient point in vascular tissue engineering due to the capability for reproducible and controlled variations showing a new horizon in blood vessel substitution. This review strives to display the overview of current concepts in the development of small-diameter by using bioreactors. In this work, we show a critical look at different factors for developing small-diameter and give suggestions for future studies.


Assuntos
Reatores Biológicos , Prótese Vascular , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Animais , Humanos , Miócitos de Músculo Liso/fisiologia , Perfusão , Publicações
2.
J Med Life ; 13(2): 241-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742521

RESUMO

Cell culture is one of the most commonly used techniques in the production of biological products. Many physical and chemical parameters may affect cell growth and proliferation. This study was conducted to investigate the effect of chemical components as supplements using the experimental design method, which aimed at reducing the number of experiments. For this purpose, supplements including chemical components using four levels, with three replications in suspension and batch culture conditions, were examined for 72 hours using the Taguchi experimental design method. From the experiments, it was concluded that the culture media composition had a significant impact on final cell count and pH. High concentrations of different media composition alone were insufficient to ensure higher cell count. According to the results, this insufficiency was associated with an increase of 20% in the number of final cells. In the majority of cultures, the number of final cells at 48 hours increased relative to the number of final cells at 24 hours after culturing the cells.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus da Febre Aftosa/imunologia , Rim/citologia , Vacinas Virais/imunologia , Aminoácidos/farmacologia , Animais , Contagem de Células , Células Cultivadas , Cricetinae , Vírus da Febre Aftosa/efeitos dos fármacos , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Proteínas/farmacologia , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA