Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Opt Express ; 31(2): 1202-1213, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785160

RESUMO

Organohalide perovskite materials and related optoelectronic applications have drawn significant attention due to their promising high-performance photon-to-electricity conversion efficiencies. Herein, we demonstrate a highly sensitive self-powered perovskite-based photodetector created with a noise-current-suppressible passivation layer of poly(methyl methacrylate) (PMMA) at the interface between a CH3NH3PbI3 light-absorbing layer and a NiOx hole-transporting layer. Along with the defect passivation effect, the PMMA layer effectively diminishes unwanted carrier recombination losses at the interface, resulting in a significant reduction of the leakage/noise current. Consequently, without external bias, a remarkably high level of specific detectivity (∼4.5 × 1013 Jones from the dark current and ∼0.81 × 1012 Jones from the noise current) can be achieved due to the use of the PMMA passivation layer, greatly exceeding those of conventional unpassivated perovskite devices. Moreover, we observed a very wide linear dynamic response range of ∼129 dB together with rapid rise and decay response times of ∼52 and ∼18 µs, respectively. Overall, these results provide a solid foundation for advanced interface-engineering to realize high-performance self-powered perovskite photodetectors for various optoelectronic applications.

2.
Opt Express ; 27(12): A693-A706, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252847

RESUMO

Polymeric light-emitting materials have been developed recently as an attractive solution-processable alternative to conventional vacuum-deposited small molecules in organic/polymeric light-emitting diodes, but they are still limited in terms of their performance, especially with low luminance and efficiency. We report on some noteworthy characteristics of a new type of single emitting layer (EML), composed of a blend of a host blue-emitting polyspirobifluorene-based copolymer and a guest yellow-emitting poly(p-phenylene vinylene) derivative copolymer. These host and guest polymers have nearly identical highest occupied molecular orbital levels of about 5.2 eV, and lowest unoccupied molecular orbital levels of about 2.4 eV and 2.9 eV, respectively, minimizing the prevailing charge-trapping properties of their blend. Even in the absence of the charge-trapping effect, it is shown that very bright green electroluminescent (EL) emission with a maximum luminance of ~142,000 cd/m2 can be realized for the blended host:guest EML at a moderate concentration (~5 wt%) of the guest polymer. Current efficiency is also observed to be up to ~14 cd/A, which is much higher than those (3.6~5.1 cd/A) of reference devices with pure host or pure guest polymeric EMLs. Moreover, there is a small change in green color emission, with CIE coordinates of (0.35, 0.60) even at high luminance, showing good color stability of the EL emission from the blended EML. These significant improvements in device performance are mainly attributed to efficient Förster resonance energy transfer between the host and guest polymers in the blended EML. Together with its simple structure and easy processability, the high brightness and efficiency of our blended polymeric EML provides a new platform for the development of solution-processable light-emitting devices and/or advanced emissive display devices.

3.
Opt Express ; 24(22): A1321-A1335, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828519

RESUMO

We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

4.
Opt Express ; 24(10): A846-55, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409957

RESUMO

We herein report an investigation of the device performance capabilities and impedance characteristics of solution-processed organic light-emitting devices (OLEDs) with all-water-processable triple-stacked hole-selective layers (HSLs) on an indium-tin-oxide (ITO) anode, fabricated using a simple coating technique. Highly smooth and homogeneous triple-stacked layers were deposited via horizontal-dip- (H-dip-) coating using aqueous dispersions of graphene oxide (GO), molybdenum oxide (MoO3), and poly(ethylenedioxy thiophene):poly(styrene sulfonate) ( PEDOT: PSS). From the triple-stacked GO/MoO3/ PEDOT: PSS HSLs used as hole-injection layers (HILs) in the OLEDs, which outperform a conventional single HIL of PEDOT: PSS, it was found that OLEDs with triple-stacked HILs exhibited characteristic impedance properties, including low parallel resistance with trap-free space-charge-limited conductivity. Furthermore, it was shown that the relaxation frequency of a sample OLED with triple-stacked GO/MoO3/ PEDOT: PSS HILs was much higher than that of a reference device with a single PEDOT: PSS HIL. These impedance behaviors indicate that carrier (hole) injection in the sample OLED is more efficient than that in any of the other devices tested here. The results presented here clarify that the triple-stacked GO/MoO3/ PEDOT: PSS layers can act as efficient HILs on an ITO anode, representing a remarkable advance in relation to the mass production of high-performance solution-processable OLEDs.

5.
Opt Express ; 23(11): A625-39, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072887

RESUMO

We report on an investigation of water-processable triple-stacked hole-selective layers for solution-processable organic semiconducting devices using a simple horizontal-dip (H-dip) coating technique. Homogeneous layers were successfully deposited via H-dip-coating using aqueous solutions of graphene oxide (GO), molybdenum oxide (MoO3), and poly(ethylenedioxy thiophene):poly(styrene sulfonate) ( PEDOT: PSS). The use of the triple-stacked GO/MoO3/ PEDOT: PSS layers as hole-injecting layers (HILs) in solution-processable organic light-emitting diodes (OLEDs) resulted in a considerable improvement of device performance in terms of brightness (maximum brightness: 47,000 cd/m2) as well as efficiency (peak efficiency: 31.5 cd/A), exceeding those of an OLED with a conventional single PEDOT: PSS HIL. Furthermore, polymer solar cells (PSCs) with these triple-stacked layers used as hole-collecting layers (HCLs) showed a considerable improvement in power conversion efficiency (6.62%), which was also higher than that (5.65%) obtained using the single PEDOT: PSS HCL. These results clearly indicate the benefits of using triple-stacked GO/MoO3/ PEDOT: PSS layers, which provide better hole-injection/collection, electron-blocking, and improved stability for high performance solution-processable OLEDs and PSCs.

6.
J Nanosci Nanotechnol ; 14(12): 9498-503, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971090

RESUMO

Resistive switching random-access memory (ReRAM) devices based on chalcogenide solid electrolytes have recently become a promising candidate for future low-power nanoscale nonvolatile memory application. The resistive switching mechanism of ReRAM is based on the formation and rupture of conductive filament (CF) in the chalcogenide solid electrolyte layers. However, the random diffusion of metal ions makes it hard to control the CF formation, which is one of the major obstacles to improving device performance of ReRAM devices. We demonstrate the spin-coated metal nanocrystals (NCs) enhance the bipolar resistive switching (BRS) memory characteristics. Compared to the Ag/Ge0.5Se0.5/Pt structure, excellent resistive switching memory characteristics were obtained from the Ag/Ge0.5Se0.5/Ag NCs/Pt structure. Ag NCs improve the uniformity of resistance values and reduce the reset voltage and current. A stable DC endurance (> 100 cycles) and a high data retention (> 10(4) sec) were achieved by spin coating the Ag NCs on the Pt bottom electrode for ReRAMs.


Assuntos
Eletrodos , Eletrólitos , Germânio/química , Nanopartículas , Selênio/química , Prata/química
7.
ACS Appl Mater Interfaces ; 16(33): 43762-43773, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106292

RESUMO

Inkjet printing, a highly promising technique for the cost-effective fabrication of large-scale organic light-emitting devices (OLEDs), typically necessitates the intricate alignment of precisely patterned insulating layers. Recently, we introduced a unique single-step inkjet printing process that produces well-patterned microinlaid spots of functional compounds through insulating polymer layers. This approach exploits lateral phase separation between the solute of functional compounds and the polymer, allowing the simultaneous spatial etching of the polymer and the infilling of the solute using a single inkjet-printed sessile droplet. Here, we demonstrate that the interaction between the solvent and polymer, as well as the solute and polymer, critically determines the precision and efficiency of printing. This is particularly evident when using either the insulating poly(vinylpyridine) isomer of poly(4-vinylpyridine) (P4VP) or poly(2-vinylpyridine) (P2VP) with chloroform as a solvent, which allows for a detailed examination of these interactions based on certain solubility parameters. Micro-Raman spectroscopy reveals that the self-organizing capability of the microinlaid spots with P4VP is superior to that with P2VP. This is due to the fact that P2VP shows higher affinity to the solvent and causes imperfect phase separation as compared to P4VP. As a result, a performance evaluation demonstrates enhanced device performance for inkjet-printed green micro-OLEDs with P4VP, exhibiting a higher external quantum efficiency of 3.3% compared to that of 2.3% achieved with P2VP. These findings elucidate the important roles of solvent-polymer and solute-polymer interactions in the inkjet printing process, leading to interfacial control of inkjet printing technique for the cost-effective production of high-performance and high-resolution micro-OLEDs.

8.
Opt Express ; 21 Suppl 1: A146-56, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389265

RESUMO

We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C71 butyric acid methyl ester (PCBM70), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM70 system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM70 PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Luz Solar , Desenho de Equipamento
9.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770580

RESUMO

For several years now, organic-inorganic hybrid perovskite materials have shown remarkable progress in the field of opto-electronic devices. Herein, we introduce a cathode-side passivation layer of poly(methyl methacrylate) (PMMA) for a highly efficient and stable self-powered CH3NH3PbI3 perovskite-based photodiode. For effective noise-current suppression, the PMMA passivation layer was employed between a light-absorbing layer of CH3NH3PbI3 (MAPbI3) perovskite and an electron transport layer of [6,6]-phenyl-C61-butyric acid methyl ester. Due to its passivation effect on defects in perovskite film, the PMMA passivation layer can effectively suppress interface recombination and reduce the leakage/noise current. Without external bias, the MAPbI3 photodiode with the PMMA layer demonstrated a significantly high specific detectivity value (~1.07 × 1012 Jones) compared to that of a conventional MAPbI3 photodiode without a PMMA layer. Along with the enhanced specific detectivity, a wide linear dynamic response (~127 dB) with rapid rise (~50 µs) and decay (~17 µs) response times was obtained. Furthermore, highly durable dynamic responses of the PMMA-passivated MAPbI3 photodiode were observed even after a long storage time of 500 h. The results achieved with the cathode-side PMMA-passivated perovskite photodiodes represent a new means by which to realize highly sensitive and stable self-powered photodiodes for use in developing novel opto-electronic devices.

10.
Opt Express ; 20 Suppl 2: A278-86, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418677

RESUMO

We present herein the results of a study of the reflective polarizing photovoltaic (PV) effects in an aligned polymer bulk-heterojunction PV layer. The PV layer consisted of a composite of regioregular poly(3-hexylthiophene) and methanofullerene (P3HT:PCBM) and the fairly uniform in-plane alignment of the P3HT:PCBM PV layer was achieved by means of a simple rubbing technique. The macroscopic axial orientation of the P3HT polymer in the aligned PV layer was observed to be significantly increased in the direction of rubbing with an axial orientational order parameter of 0.40. Moreover, it was also found that the reflective polarizing polymer solar cells (PSCs) that contained the aligned P3HT:PCBM layers exhibited a greater degree of anisotropy of 1.60 for the PV efficiencies under polarized illumination along the two principal axes. These reflective polarizing PSCs were applied to new reflective type solar cell-liquid crystal displays (Solar-LCDs), which exhibited a contrast ratio of 1.7. These results form a promising foundation for various energy-harvesting polarization-dependent opto-electrical Solar-LCD device applications.

11.
Adv Sci (Weinh) ; 9(9): e2105851, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088585

RESUMO

Ensuring the long-term stability of high-performance organic light-emitting diodes (OLEDs) has remained a great challenge due to their limited lifetime and durability. Herein, a novel functional interlayer consisting of a poly(amic acid)-polyimide copolymer is introduced for use in OLEDs. It is shown that an OLED sample with a polyimide-copolymer interlayer exhibits high peak brightness of nearly 96 000 cd m-2 and efficiency of ≈92 cd A-1 , much higher than those (≈73 000 cd m-2 and ≈83 cd A-1 ) of a well-organized reference OLED. Moreover, the growth of dark spots is strongly suppressed in the sample OLED and the device lifetime is extended considerably. Further, highly stable and uniform large-area OLEDs are successfully produced when using the interlayer. These improvements are ascribed not only to the excellent film-forming and hole-transferring properties but also to the inner passivating capability of the polyimide-copolymer interlayer. The results here suggest that the introduction of an inner passivating/encapsulating hole-transferable polyimide-copolymer interlayer together with conventional external encapsulation technology represents a promising breakthrough that enhances the longevity of high-performance next-generation OLEDs.

12.
Opt Express ; 19 Suppl 5: A1117-25, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935254

RESUMO

We herein present the results of a study of the direct fabrication of buckled patterns in flexible organic light-emitting devices (FOLEDs) that had a conducting polymer anode on a polyethersulfone substrate. These patterns were produced spontaneously by the thermal deposition of an aluminum cathode on an electroluminescent (EL) composite layer. The polymer used for the anode was modified poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and the EL layer was composed of a solution-processable small molecular composite including phosphorescent Iridium complex mixed with a poly(vinylcarbazole) host. It is shown that FOLEDs produced with buckled patterns can exhibit a luminance as high as ca. 14,900 cd/m(2) with a peak efficiency of 50.5 cd/A. The patterned structure formed by the buckling of the EL layer allows FOLEDs to be produced with a high peak external quantum efficiency of 15% with an increase in light extraction by a factor of ca. 3.1. These results show that spontaneous buckling yields patterned structures that offer considerable promise for the production of high performance, reproducible and reliable FOLEDs.

13.
RSC Adv ; 11(29): 17901-17909, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35480167

RESUMO

Since the innovation of van der Waals heterostructures of 2D materials, the p-n junction diode, a building block of electronics and opto-electronics has been studied in various ways. To date most of them have been studied on SiO2 or other oxide substrates, although the oxide substrates cause significant degradation of the 2D material's intrinsic properties and device performances. Whereas using hexagonal boron nitride (h-BN) as an underlying layer to the 2D materials is known to preserve their properties. Here we have carefully analyzed the electrical and opto-electrical properties of a p-WSe2/n-WS2 van der Waals heterojunction diode on SiO2 and the h-BN substrates. Besides the usual enhancement of the field-effect mobility of WSe2 and WS2, we have achieved a significant enhancement of the diode rectification ratio and excellent photovoltaic characteristics on the h-BN substrate. We have obtained more than an order-of-magnitude enhancement of the diode rectification ratio and about two-fold increments in the overall opto-electronics behavior on the h-BN substrate compared with those on the SiO2 substrate. The values of self-powered photo responsivity and external quantum efficiency are 3 A/W and 588% respectively on the h-BN substrate at 10 mW cm-2 photo-power density and 633 nm wavelength, whereas they reduce to about one-half on the SiO2 substrate.

14.
Adv Sci (Weinh) ; 8(11): e2003713, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34105276

RESUMO

Recently, van der Waals heterostructures (vdWHs) based on transition-metal dichalcogenides (TMDs) have attracted significant attention owing to their superior capabilities and multiple functionalities. Herein, a novel vdWH field-effect transistor (FET) composed of molybdenum ditelluride (MoTe2 ) and palladium diselenide (PdSe2 ) is studied for highly sensitive photodetection performance in the broad visible and near-infrared (VNIR) region. A high rectification ratio of 6.3 × 105 is obtained, stemming from the sharp interface and low Schottky barriers of the MoTe2 /PdSe2 vdWHs. It is also successfully demonstrated that the vdWH FET exhibits highly sensitive photo-detecting abilities, such as noticeably high photoresponsivity (1.24 × 105 A W-1 ), specific detectivity (2.42 × 1014 Jones), and good external quantum efficiency (3.5 × 106 ), not only due to the intra-TMD band-to-band transition but also due to the inter-TMD charge transfer (CT) transition. Further, rapid rise (16.1 µs) and decay (31.1 µs) times are obtained under incident light with a wavelength of 2000 nm due to the CT transition, representing an outcome one order of magnitude faster than values currently in the literature. Such TMD-based vdWH FETs would improve the photo-gating characteristics and provide a platform for the realization of a highly sensitive photodetector in the broad VNIR region.

15.
Sci Rep ; 11(1): 169, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420313

RESUMO

Hybrid organic-inorganic perovskite materials provide noteworthy compact systems that could offer ground-breaking architectures for dynamic operations and advanced engineering in high-performance energy-harvesting optoelectronic devices. Here, we demonstrate a highly effective self-powered perovskite-based photodiode with an electron-blocking hole-transport layer (NiOx). A high value of responsivity (R = 360 mA W-1) with good detectivity (D = 2.1 × 1011 Jones) and external quantum efficiency (EQE = 76.5%) is achieved due to the excellent interface quality and suppression of the dark current at zero bias voltage owing to the NiOx layer, providing outcomes one order of magnitude higher than values currently in the literature. Meanwhile, the value of R is progressively increased to 428 mA W-1 with D = 3.6 × 1011 Jones and EQE = 77% at a bias voltage of - 1.0 V. With a diode model, we also attained a high value of the built-in potential with the NiOx layer, which is a direct signature of the improvement of the charge-selecting characteristics of the NiOx layer. We also observed fast rise and decay times of approximately 0.9 and 1.8 ms, respectively, at zero bias voltage. Hence, these astonishing results based on the perovskite active layer together with the charge-selective NiOx layer provide a platform on which to realise high-performance self-powered photodiode as well as energy-harvesting devices in the field of optoelectronics.

16.
Opt Express ; 18(19): 19824-30, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940874

RESUMO

We present results that show highly polarized electroluminescence (EL) from an organic light-emitting device (OLED) by using a quarter-wave (λ/4) retardation plate (QWP) film and a giant birefringent optical (GBO) photonic reflective polarizer. Polarized EL light of 13,400 cd/m(2) with high peak efficiencies (greater than 10 cd/A and 3.5 lm/W) was obtained from an OLED in this way. These values are almost double those of a polarized OLED that only uses a polarizer. The direction of polarization of the emitted EL light from the polarized OLED corresponded to the passing axis of the GBO reflective polarizer. Furthermore, the degree of linear polarization obtained, i.e. the ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis, is greater than 40 over the whole range of emitted luminance.


Assuntos
Iluminação/instrumentação , Medições Luminescentes/instrumentação , Compostos Orgânicos/química , Refratometria/instrumentação , Retroalimentação , Fótons
17.
Opt Express ; 17(16): 13830-40, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654789

RESUMO

We present the results of a study of flat and uniform poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic (PV) layers that were produced by a simple pre-metered horizontal-dipping process for the fabrication of polymer solar cells (PSCs). It is shown that this process can produce high quality and thin films by utilizing the downstream meniscus of the solution, which can be controlled by adjusting experimental parameters of the gap height and the carrying speed. It is also shown that the produced PV film exhibits high power conversion efficiency of ca. 4.2% with a large active area. It was demonstrated that this pre-metered process for solution coating may be promising for achieving highly efficient, reliable, and large-area PSCs.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Fotoquímica/instrumentação , Polímeros/química , Polímeros/efeitos da radiação , Energia Solar , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície
18.
Opt Express ; 17(24): 21362-9, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997376

RESUMO

We present the results of a study of flat and uniform organic electroluminescent (EL) layers produced using a simple premetered horizontal-dipping process. It is shown that this process can produce high quality organic semiconductor thin films by utilizing the downstream meniscus of the solution, which may be controlled by adjusting the gap height and the carrying speed. It is also shown that the organic light emitting devices (OLEDs) produced using this method exhibit a peak brightness in excess of 52,000 cd/m(2) and a maximum efficiency of 24 cd/A, with a large active area. From these results, we show that this premetered process for solution coating offers considerable promise for the production of highly efficient, reliable, and large-area solution-processed OLEDs.

19.
Opt Express ; 17(9): 7059-67, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19399081

RESUMO

We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.


Assuntos
Iluminação/instrumentação , Compostos Orgânicos/química , Refratometria/instrumentação , Semicondutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Opt Express ; 17(15): 12323-31, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19654634

RESUMO

We present the results of a study of highly circularly polarized unidirectional lasing emission from an organic lasing device that consisted of a dye-doped cholesteric liquid crystal (CLC) layer on a 1-dimensional (1-D) photonic crystal (PC) reflecting mirror substrate. Unidirectional lasing was demonstrated successfully for this device structure at the wavelength of the high-energy band edge of the CLC layer. It was also shown that circularly polarized lasing emission was produced from the lasing device at a low lasing threshold of 2.5 mJ/pulse. The handedness of lasing light corresponds to the handedness of the used CLC layer with a high ratio of intensity between right- and left-handed circularly polarized lasing light over of up to 3.7. These results show that the CLC / 1-D PC device enables unidirectional lasing with highly circularly polarized laser emission..


Assuntos
Colesterol/química , Corantes/química , Cristais Líquidos/química , Óptica e Fotônica , Desenho de Equipamento , Imageamento Tridimensional , Lasers , Luz , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA