Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063064

RESUMO

Gravel is used in railway infrastructure to reduce environmental impacts and noise, but gravel on tracks must be replaced continuously because it deforms due to wear and weathering. It is therefore necessary to review the entire railroad life cycle. In this study, an unmanned aerial vehicle (UAV) was used to measure resuspended dust over a wide area. The dust was generated from transport movements in relation to the operation of a quarry, which represents the first stage of the railway life cycle. The dust was measured at Gangwon-do quarry using a Sniffer4D module, which can provide measurements at 1 s intervals through a light scattering method and has high reliability (R2 = 0.95 for PM2.5, R2 = 0.88 for PM10). The hourly generation of fugitive dust was calculated as 2937.5 g/h for PM2.5 and 4293.2 g/h for PM10. The social cost of dust generation was calculated as KRW 36.59 billion. The amount of dust generated per hour at the quarry was ~12 times greater than that generated by the operation of a regulator as a maintenance vehicle, with the largest amount of fugitive dust generated by the washing-type vehicle. This is the first study to measure the amount of fugitive dust generated in real time at 1 s intervals by monitoring the first stage of the railroad life cycle over a wide area using a Sniffer4D module attached to a UAV. This method can be replicated for use in various studies.

2.
Environ Sci Technol ; 53(18): 10906-10916, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31441306

RESUMO

Crystal facet-dominated surfaces determine the formation of surface-active complexes, and engineering specific facets is desirable for improving the catalytic activity of routine transition-metal oxides that often deactivate at low temperatures. Herein, MnOx-CeO2 was synthetically administered to tailor the exposure of three major facets, and their distinct surface-active complexes concerning the formation and quantitative effects of oxygen vacancies, catalytically active zones, and active-site behaviors were unraveled. Compared with two other low-index facets {110} and {001}, MnOx-CeO2 with exposed {111} facet showed higher activity for formaldehyde oxidation and CO2 selectivity. However, the {110} facet did not increase activity despite generating additional oxygen vacancies. Oxygen vacancies were highly stable on the {111} facet, and its bulk lattice oxygen at high migration rates could replenish the consumption of surface lattice oxygen, which was associated with activity and stability. High catalytically active regions were exposed at the {111}-dominated surfaces, wherein the predominated Lewis acid-base properties facilitated oxygen mobility and activation. The mineralization pathways of formaldehyde were examined by a combination of in situ X-ray photoemission spectroscopy and diffuse reflectance infrared Fourier transform spectrometry. The MnOx-CeO2-111 catalysts were subsequently scaled up to work as filter substrates in a household air cleaner. In in-field pilot tests, 8 h of exposure to an average concentration of formaldehyde after start-up of the air cleaner attained the Excellent Class of Indoor Air Quality Objectives in Hong Kong.


Assuntos
Formaldeído , Óxidos , Catálise , Hong Kong , Oxirredução
3.
Environ Sci Technol ; 53(9): 5230-5240, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990308

RESUMO

Formation and decay of formaldehyde oxides (CH2OO) affect the complete oxidation of formaldehyde. However, the speciation and reactivity of CH2OO are poorly understood because of its extremely fast kinetics and indirect measurements. Herein, three isomers of CH2OO (i.e., main formic acid, small dioxirane, and minor CH2OO Criegee) were in situ determined and confirmed as primary intermediates of the room-temperature catalytic oxidation of formaldehyde with two reference catalysts, that is, TiO2/MnO x-CeO2 and Pt/MnO x-CeO2. CH2OO Criegee is quite reactive, whereas formic acid and dioxirane have longer lifetimes. The production, stabilization, and removal of the three intermediates are preferentially performed at high humidity, matching well with the decay rate of CH2OO at approximately 6.6 × 103 s-1 in humid feed gas faster than 4.0 × 103 s-1 in dry feed. By contrast, given that a thinner water/TiO2 interface was well-defined in TiO2/MnO x-CeO2, fewer reductions in the active sites and catalytic activity were found when humidity was decreased. Furthermore, lethal intermediates mostly captured at the TiO2/MnO x-CeO2 surface suppressed the toxic off-gas emissions. This study provides practical insights into the rational design and selectivity enhancement of a reliable catalytic process for indoor air purification under unfavorable ambient conditions.


Assuntos
Formaldeído , Óxidos , Catálise , Cinética , Oxirredução
4.
J Nanosci Nanotechnol ; 19(10): 6636-6640, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31027003

RESUMO

A novel composite, FexSnyOz, consisting of tin oxide and iron oxide was developed via a galvanic replacement reaction. The morphology, crystalline structure, and composition of the FexSnyOz composite were investigated by employing X-ray diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. When evaluated as an anode material using different binders, namely, polyvinylidene fluoride (PVDF) and poly(acrylic acid) (PAA), the composite blended with the PAA binder displayed a high coulombic efficiency and excellent cycling stability compared to the composite mixed with the PVDF binder. The excellent electrochemical performance could be attributed to the different interactions between the current collector and the binders, as well as the volume accommodation during cycling. Therefore, the results indicated that the application of an appropriate binder could lead to a significant improvement in the electrochemical performance of FexSnyOz composite anodes for lithium-ion batteries.

5.
J Nanosci Nanotechnol ; 18(2): 1361-1364, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448592

RESUMO

A series of hydrogen-based TiO2 photocatalysts were prepared by the simple entrapment of TiO2 nanoparticles in different hydrogel matrices using gelation processes. The hydrogels, namely, agarose, alginate, and chitosan, were used as matrices for TiO2 immobilization. Morphological differences were characterized for the three different hybrid gel photocatalysts. The rate of methylene blue (MB) photodegradation increased with increasing initial TiO2 dosage in all samples. The structural properties of the hydrogels significantly affected the diffusion of MB and altered the photocatalytic activities. Among these three different hybrid gel photocatalysts, the chitosan-based TiO2 membrane showed superior activity to the agarose- and alginate-based TiO2 hybrid gels. In addition, chitosan/TiO2 still showed excellent photocatalytic activity after being reused in three cycles, suggesting that chitosan/TiO2 is a new potential eco-friendly and a cost-effective photocatalyst for wastewater treatment.

6.
J Nanosci Nanotechnol ; 18(9): 6070-6074, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677745

RESUMO

TiO2 nanoparticles (NPs) with their excellent photocatalytic performance are among the hottest research subjects for environmental-cleanup applications. In the present work, we developed a method of one-pot synthesis of magnesium aminoclay-titanium dioxide [MgAC-TiO2] nanocomposites in ethanol solution and then treated the obtained nanocomposites in a 350 °C muffle furnace for 3 hours. The obtained X-ray diffraction (XRD) patterns confirmed the growth of the anatase TiO2 NPs in the amorphous MgAC phase. In the scanning electron microscopy (SEM) morphological observation, the MgAC-TiO2 nanocomposites exhibited an aggregate form of 246.59 ± 54.20 nm diameter. The synthesis condition entailing loading of 0.3 g MgAC and 5 mL titanium butoxide (TB) (denoted as MgAC [0.3 g]-TiO2 in 40 mL ethanol solution displayed the largest BET surface area, 234.91 m2/g, as well as the largest pore size and pore volume, 6.7131 nm and 0.3942 cm3/g, respectively. Also, MgAC [0.3 g]-TiO2 showed the best photocatalytic performance for methylene blue (MB) on the batch scale under 365 nm wavelength irradiation: a degradation constant rate of 0.0293 min-1, which was ~20-times-better photocatalytic activity than commercial P25. On the pilot scale (100 L), the MgAC [0.3 g]-TiO2 nanocomposite took only ~12 hours to degrade almost MB at 10 ppm concentration. The mechanism of this high photocatalytic activity was determined to be the high rate of adsorption of both MgAC and oxygen vacancies in the anatase phase coupled with the retardation of the rate of recombination of electrons and holes in the TiO2 NPs, the latter proved by photoluminescent quenching tests.

7.
Environ Monit Assess ; 190(12): 740, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30465289

RESUMO

Understanding characteristics of diurnal particle concentration variation in an underground subway tunnel is important to reduce subway passengers' exposure to high levels of toxic particle pollution. In this study, real-time particle monitoring for eight consecutive days was done at a shelter located in the middle of a one-way underground subway tunnel in Seoul, Republic of Korea, during the summer of 2015. Particle mass concentration was measured using a dust monitor and particle number concentration using an optical particle counter. From the diurnal variations in PM10, PM2.5, and PM1, concentrations of particles larger than 0.54 µm optical particle diameter were affected by train frequency whereas those of particles smaller than 0.54 µm optical particle diameter were not changed by train frequency. Number concentration of particles smaller than 1.15 µm optical particle diameter was dependent on outdoor ambient air particle concentration level, whereas that of particles larger than 1.15 µm optical particle diameter was independent of outdoor ambient air due to low ventilation system transmission efficiency of micrometer-sized particles. In addition, an equation was suggested to predict the diurnal particle concentration in an underground tunnel by considering emission, ventilation, and deposition effects.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Humanos , Tamanho da Partícula , Ferrovias , República da Coreia , Seul , Ventilação
8.
Ecotoxicol Environ Saf ; 137: 103-112, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915140

RESUMO

Two zinc-aminoclays [ZnACs] with functionalized primary amines [(-CH2)3NH2] were prepared by a simple sol-gel reaction using cationic metal precursors of ZnCl2 and Zn(NO3)2 with 3-aminopropyl triethoxysilane [APTES] under ambient conditions. Due to the facile interaction of heavy metals with primary amine sites and Zn-related intrinsic antimicrobial activity, toxicity assays of ZnACs nanoparticles (NPs) prior to their environmental and human-health applications are essential. However, such reports remain rare. Thus, in the present study, a cell viability assay of in-vitro HeLa cells comparing ZnCl2, Zn(NO3)2 salts, and ZnO (~50nm average diameter) NPs was performed. Interestingly, compared with the ZnCl2, and Zn(NO3)2 salts, and ZnO NPs (18.73/18.12/51.49µg/mL and 18.12/15.19/46.10µg/mL of IC50 values for 24 and 48h), the two ZnACs NPs exhibited the highest toxicity (IC50 values of 21.18/18.36µg/mL and 18.37/17.09µg/mL for 24 and 48h, respectively), whose concentrations were calculated on Zn elemental composition. This might be due to the enhanced bioavailability and uptake into cells of ZnAC NPs themselves and their positively charged hydrophilicity by reactive oxygen species (ROS) generation, particularly as ZnACs exist in cationic NP's form, not in released Zn2+ ionic form (i.e., dissolved nanometal). However, in an in-vivo embryotoxicity assay in zebrafish, ZnACs and ZnO NPs showed toxic effects at 50-100µg/mL (corresponding to 37.88-75.76 of Zn wt% µg/mL). The hatching rate (%) of zebrafish was lowest for the ZnO NPs, particularly where ZnAC-[(NO3)2] is slightly more toxic than ZnAC-[Cl2]. These results are all very pertinent to the issue of ZnACs' potential applications in the environmental and biomedical fields.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Peixe-Zebra/embriologia , Compostos de Zinco/toxicidade , Zinco/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas Metálicas/química , Propilaminas/química , Propilaminas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Silanos/química , Silanos/toxicidade , Testes de Toxicidade , Zinco/química , Compostos de Zinco/química
9.
Environ Sci Technol ; 50(7): 3453-61, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967707

RESUMO

In this study, we measured the size distribution of particles ranging in size from 5.6 to 560 nm that were emitted between brake disks and pads under various braking conditions to observe and analyze changes to the resulting particle size distribution over braking time. A peak of 178-275 nm (200 nm peak) was observed in all braking conditions. However, the generation of spherical particles of a 10 nm range was observed only when the disk speed and brake force were above certain levels and intensified only when speed and brake force further increased. The total number concentration of ultrafine particles (no larger than 0.1 µm; PM0.1) generated was found to correlate with disk speed and brake force. Thus, the generation of nanoparticles resulting from disk speed and brake force was attributable primarily to increases in the contact surface temperature. The critical temperature for the generation of nanoparticles of a 10 nm range was found to be about 70 °C, which is the average temperature between the surface and the inside of the disk. If the speed or brake force was higher, that is, the temperature of the contact surface reached a certain level, evaporation and condensation took place. Vapor then left the friction surface, met with the air, and quickly cooled to form nanoparticles through nucleation. When the newly generated particles became highly concentrated, they grew through coagulation to form agglomerates or the vapor condensed directly onto the surface of existing particles of about 200 nm (formed by mechanical friction).


Assuntos
Poluentes Atmosféricos/análise , Nanopartículas , Ferrovias , Poluentes Atmosféricos/química , Fricção , Nanopartículas/análise , Nanopartículas/química , Tamanho da Partícula , Temperatura
10.
Environ Monit Assess ; 188(6): 362, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27220501

RESUMO

As the number of people using rapid transit systems (subways) continues to rise in major cities worldwide, increasing attention has been given to the indoor air quality of underground stations. This study intended to observe the change of PM distribution by size in an underground station with PSDs installed located near the main road in downtown Seoul, as well as to examine causes for the changes. The results indicate that the PM suspended in the tunnel flowed into the platform area even in a subway station where the effect of train-induced wind is blocked by installed PSDs, as this flow occurred when the PSDs were opened. The results also indicate that coarse mode particles generated by mechanical friction in the tunnel, such as that between wheels and rail, also flowed into the platform area. The PM either settled or was re-suspended according to size and whether the ventilation in the platform area was in operation or if the platform floor had been washed. The ventilation system was more effective in removing PM of smaller sizes (fine particles) while the wash-out performed after train operations had stopped reduced the suspension of coarse mode particles the next morning. Despite installation of the completely sealed PSDs, inflow of coarse mode particles from the tunnel seems unavoidable, indicating the need for measures to decrease the PM generated there to lower subway user exposure since those particles cannot be reduced by mechanical ventilation alone. This research implicate that coarse PM containing heavy metals (generated from tunnel side) proliferated especially during rush hours, during which it is very important to control those PM in order to reduce subway user exposure to this hazardous PM.


Assuntos
Aerossóis/análise , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Material Particulado/análise , Ferrovias , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental/métodos , Humanos , Ventilação
11.
J Air Waste Manag Assoc ; 64(12): 1361-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25562932

RESUMO

The level of particulate matter of less than 10 µm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 µg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 µg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Ferrovias , Cromatografia por Troca Iônica , Espectrofotometria Atômica
12.
Toxics ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39058163

RESUMO

Recently, volatile organic compounds (VOCs) have been shown to act as precursors of secondary organic particles that react with ultraviolet rays in the atmosphere and contribute to photochemical smog, global warming, odor, and human health risks, highlighting the importance of VOC management. In this study, we measured VOC concentrations in various contexts including industrial and residential areas of Bucheon, Korea, through mobile laboratory and proton-transfer-reaction time-of-flight mass spectrometry methods to determine winter VOC concentrations and visualized the data based on spatial information. Regional characteristics, temperature/humidity, atmospheric conditions, wind speed, traffic volume, etc., during the measurement period of the study site were comprehensively reviewed. For this purpose, global information system (GIS)-based air quality data and various environmental variables were comprehensively reviewed to assess spatial and temporal concentrations in three dimensions rather than in tables and graphs. Among VOCs, the levels of toluene, methanol, and n + i-butene were relatively high, with average concentrations of 48.3 ± 67.2, 34.4 ± 102.7, and 32.6 ± 57.7 ppb, respectively, at the end of the working day. The highest concentrations occurred near the Ojeong Industrial Complex. Mobile pollution sources are also a major driver of VOCs, highlighting the necessity of comprehensively reviewing traffic variables such as road level, estimated traffic volume, and average speed when identifying hotspots of air pollution. GIS-based visualization analysis techniques will improve the efficiency of air quality management.

13.
Heliyon ; 10(5): e26738, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449591

RESUMO

Aerosols carrying viruses that are released from the oral cavity of infected individuals are the primary, if not the only, means of transmission during viral respiratory disease epidemics. This makes crowded rooms and tiny, enclosed public areas like bathrooms prime environments for the transmission of diseases. Volatile organic compounds (VOCs) and formaldehyde are two contaminants that pose serious threats to human health and well-being in indoor environments. The varied disinfectant properties of chlorine dioxide (ClO2) make it a key player in treating a range of air quality issues. To balance effectiveness and safety, however, the careful application of chlorine dioxide is essential to achieving the best results in air quality while preserving human health and well-being. This study explores the many functions of chlorine dioxide, including the prevention of the spread of viruses, the elimination of harmful gases like ammonia and hydrogen sulfide, and its effects on formaldehyde and total volatile organic compounds (TVOCs) in indoor environments using BT100. The results indicate a reduction of 98.5%, 81.01%, 62.22%, 46.5%, and 63.84% in minimizing aerosolized viruses, ammonia, and hydrogen sulfide gas in addition to formaldehyde and total volatile organic compounds.

14.
Sci Rep ; 14(1): 6478, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499557

RESUMO

Health implications of indoor air quality (IAQ) have drawn more attention since the COVID epidemic. There are many different kinds of studies done on how IAQ affects people's well-being. There hasn't been much research that looks at the microbiological composition of the aerosol in subway transit systems. In this work, for the first time, we examined the aerosol bacterial abundance, diversity, and composition in the microbiome of the Seoul subway and train stations using DNA isolated from the PM10 samples from each station (three subway and two KTX stations). The average PM10 mass concentration collected on the respective platform was 41.862 µg/m3, with the highest average value of 45.95 µg/m3 and the lowest of 39.25 µg/m3. The bacterial microbiomes mainly constituted bacterial species of soil and environmental origin (e.g., Acinetobacter, Brevundimonas, Lysinibacillus, Clostridiodes) with fewer from human sources (Flaviflexus, Staphylococcus). This study highlights the relationship between microbiome diversity and PM10 mass concentration contributed by outdoor air and commuters in South Korea's subway and train stations. This study gives insights into the microbiome diversity, the source, and the susceptibility of public transports in disease spreading.


Assuntos
Poluentes Atmosféricos , Ferrovias , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Seul , Monitoramento Ambiental , Aerossóis
15.
Environ Sci Technol ; 47(22): 12952-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24180364

RESUMO

Biomass fuel is used for cooking and heating, especially in developing countries. Combustion of biomass fuel can generate high levels of indoor air pollutants, including particulate matter (PM) and volatile organic compounds (VOCs). This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment. Dung from grass-fed cows was dried and combusted using a dual-cone calorimeter. Heat fluxes of 10, 25, and 50 kW/m(2) were applied. The concentrations of PM and VOCs were determined using a dust spectrometer and gas chromatography/mass spectrometry, respectively. PM and VOC emission factors were much higher for the lower heat flux, implying a fire ignition stage. When the heat flux was 50 kW/m(2), the CO2 emission factor was highest and the PM and VOC emission factors were lowest. Particle concentrations were highest in the 0.23-0.3 µm size range at heat fluxes of 25 and 50 kW/m(2). Various toxic VOCs, including acetone, methyl ethyl ketone, benzene, and toluene, were detected at high concentrations. Although PM and VOC emission factors at 50 kW/m(2) were lower, they were high enough to cause extremely high indoor air pollution. The characteristics of PM and VOC emissions from cow dung combustion indicated potential health effects of indoor air pollution in developing countries.


Assuntos
Poluentes Atmosféricos/análise , Temperatura Alta , Esterco/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Animais , Biomassa , Bovinos
16.
Toxics ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36668795

RESUMO

The effective management and regulation of fine particulate matter (PM2.5) is essential in the Republic of Korea, where PM2.5 concentrations are very high. To do this, however, it is necessary to identify sources of PM2.5 pollution and determine the contribution of each source using an acceptance model that includes variability in the chemical composition and physicochemical properties of PM2.5, which change according to its spatiotemporal characteristics. In this study, PM2.5 was measured using PMS-104 instruments at two monitoring stations in Bucheon City, Gyeonggi Province, from 22 April to 3 July 2020; the PM2.5 chemical composition was also analyzed. Sources of PM2.5 pollution were then identified and the quantitative contribution of each source to the pollutant mix was estimated using a positive matrix factorization (PMF) model. From the PMF analysis, secondary aerosols, coal-fired boilers, metal-processing facilities, motor vehicle exhaust, oil combustion residues, and soil-derived pollutants had average contribution rates of 5.73 µg/m3, 3.11 µg/m3, 2.14 µg/m3, 1.94 µg/m3, 1.87 µg/m3, and 1.47 µg/m3, respectively. The coefficient of determination (R2) was 0.87, indicating the reliability of the PMF model. Conditional probability function plots showed that most of the air pollutants came from areas where PM2.5-emitting facilities are concentrated and highways are present. Pollution sources with high contribution rates should be actively regulated and their management prioritized. Additionally, because automobiles are the leading source of artificially-derived PM2.5, their effective control and management is necessary.

17.
Toxics ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37999543

RESUMO

In urban areas, a major source of harmful particulate matter is generated by vehicles. In particular, bus stops, where people often stay for public transportation, generate high concentrations of particulate matter compared to the general atmosphere. In this study, a non-powered type brush filter that generates electrostatic force without using a separate power source was developed to manage the concentration of particulate matter exposed at bus stops, and the removal performance of particulate matter was evaluated. The dust collection performance of the non-motorized brush filter varied by material, with particle removal efficiencies of 82.1 ± 3.4, 76.1 ± 4.7, and 73.7 ± 4.5% for horse hair, nylon, and stainless steel, respectively. In conditions without the fan running to see the effect of airflow, the particle removal efficiency was relatively low at 58.2 ± 8.4, 53.6 ± 9.2, and 58.0 ± 7.3%. Then, to check the dust collection performance according to the density, the number of brushes was increased to densify the density, and the horse hair, nylon, and stainless steel brush filters showed a maximum dust collection performance of 89.6 ± 2.2, 88.3 ± 3.2, and 82.1 ± 3.8%, respectively. To determine the replacement cycle of the non-powered brush filter, the particulate removal performance was initially 88.0 ± 3.2% when five horse hair brushes were used. Over time, particulate matter tended to gradually decrease, but after a period of time, particulate matter tended to increase again. The purpose of this study is to evaluate the particulate matter removal performance using a brush filter that generates electrostatic force without a separate power source. This study's brush filter is expected to solve the maintenance problems caused by the purchase and frequent replacement of expensive HEPA filters that occur with existing abatement devices, and the ozone problems caused by abatement devices that use high voltages.

18.
Toxics ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36850988

RESUMO

Evaluating an illness's economic impact is critical for developing and executing appropriate policies. South Korea has mandatory national health insurance in the form of NHIS that provides propitious conditions for assessing the national financial burden of illnesses. The purpose of our study is to provide a comprehensive assessment of the economic impact of PM2.5 exposure in the subway and a comparative analysis of cause-specific mortality outcomes based on the prevalent health-risk assessment of the health effect endpoints (chronic obstructive pulmonary disease (COPD), asthma, and ischemic heart disease (IHD)). We used the National Health Insurance database to calculate the healthcare services provided to health-effect endpoints, with at least one primary diagnosis in 2019. Direct costs associated with health aid or medicine, treatment, and indirect costs (calculated based on the productivity loss in health effect endpoint patients, transportation, and caregivers, including morbidity and mortality costs) were both considered. The total cost for the exposed population for these endpoints was estimated to be USD 437 million per year. Medical costs were the largest component (22.08%), followed by loss of productivity and premature death (15.93%) and other costs such as transport and caregiver costs (11.46%). The total incurred costs (per 1000 persons) were accounted to be USD 0.1771 million, USD 0.42 million, and USD 0.8678 million for COPD, Asthma, and IHD, respectively. Given that the economic burden will rise as the prevalence of these diseases rises, it is vital to adopt effective preventative and management methods strategies aimed at the appropriate population.

19.
Toxics ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999584

RESUMO

Driven by industrialization and urbanization, urban air pollution can increase respiratory, heart, and cerebrovascular diseases, and thus mortality rates; as such, it is necessary to improve air quality through the consideration of individual pollutants and emission sources. In Republic of Korea, national and local governments have installed urban and roadside air quality monitoring systems. However, stations are lacking outside metropolitan regions, and roadside stations are sparsely distributed, limiting comparisons of pollutant concentrations with vehicle traffic and floating population levels. Local governments have begun using mobile laboratories (MLs) to supplement the fixed measurement network and investigate road pollution source characteristics based on their spatiotemporal distribution; however, the collected data cannot be used effectively if they are not visualized. Here, we propose a method to collect and visualize global information system (GIS)-based air quality data overlayed with environmental variables to support air quality management measures. Spatiotemporal analyses of ML-derived data from Bucheon, Korea, confirmed that particulate and gaseous pollutant concentrations were high during typical commuting hours, at intersections, and at a specially managed road. During commuting hours, the maximum PM10 concentration reached 200.7 µg/m3 in the Nae-dong, Gyeongin-ro, and Ojeong-dong ready-mix concrete complex areas, and the maximum PM2.5 concentration was 161.7 µg/m3. The maximum NOx, NO2, and NO levels of 1.34 ppm, 0.18 ppm, and 1.18 ppm, respectively, were also detected during commuting hours. These findings support the need for targeted management of air pollution in this region, and highlight the benefit of comprehensively comparing road levels, driving speed, and traffic levels when identifying hotspots of air pollution. Such analyses will contribute to the development of air quality management measures customized to regional characteristics.

20.
Heliyon ; 9(11): e21751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053859

RESUMO

Public transportation facilities, especially road crossings, which raise the pathogenic potential of urban environments, are the most conducive places for the transfer of germs between people and the environment. It is necessary to study the variety of the microbiome and describe its unique characteristics to comprehend these relationships. In this investigation, we used 16 S rRNA gene sample sequencing to examine the biological constituents and inhalable, thoracic, and alveolar particles in aerosol samples collected from busy areas in the Gangnam-gu district of the Seoul metropolitan area using a mobile vehicle. We also conducted a comparison analysis of these findings with the previously published data and tested for antibiotic resistance to determine the distribution of bacteria related to the human microbiome and the environment. Actinobacteria, Cyanobacteria, Bacteriodetes, Proteobacteria, and Firmicutes were the top five phyla in the bacterial 16 S rRNA libraries, accounting for >90 % of all readings across all examined locations. The most prevalent classes among the 12 found bacterial classes were Bacilli (45.812 %), Gammaproteobacteria (25.238 %), Tissierellia (13.078 %), Clostridia (5.697 %), and Alphaproteobacteria (5.142 %). The data acquired offer useful information on the variety of bacterial communities and their resistance to antibiotic drugs on the streets of Gangnam-gu, one of the most significant social centers in the Seoul metropolitan area. This work emphasizes the relevance of biological particles and particulate matter in the air, and it suggests more research is needed to perform biological characterization of the ambient particulate matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA