Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

2.
Materials (Basel) ; 11(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772650

RESUMO

LTO (Li4Ti5O12) has been highlighted as anode material for next-generation lithium ion secondary batteries due to advantages such as a high rate capability, excellent cyclic performance, and safety. However, the generation of gases from undesired reactions between the electrode surface and the electrolyte has restricted the application of LTO as a negative electrode in Li-ion batteries in electric vehicles (EVs) and energy storage systems (ESS). As the generation of gases from LTO tends to be accelerated at high temperatures (40⁻60 °C), the thermal stability of LTO should be maintained during battery discharge, especially in EVs. To overcome these technical limitations, a thin layer of Al2O3 (~2 nm thickness) was deposited on the LTO electrode surface by atomic layer deposition (ALD), and an electrochemical charge-discharge cycle test was performed at 60 °C. The capacity retention after 500 cycles clearly shows that Al2O3-coated LTO outperforms the uncoated one, with a discharge capacity retention of ~98%. TEM and XPS analyses indicate that the surface reactions of Al2O3-coated LTO are suppressed, while uncoated LTO undergoes the (111) to (222) phase transformation, as previously reported in the literature.

3.
ChemSusChem ; 2(3): 221-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19241431

RESUMO

A sense of stability: The stability of carbon-supported platinum catalysts at high potentials is important for the commercialization of fuel cells for homes and cars. The electrochemical active surface (EAS) area of a Pt-C aerogel catalyst was found to increase up to 500 cycles, in contrast to that for the so-called Tanaka catalyst which decreases with the number of repeated potential cycles.


Assuntos
Carbono/química , Platina/química , Catálise , Eletroquímica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA