RESUMO
Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.
Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Fitoestrógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Biogênese de OrganelasRESUMO
Cancer cachexia is a type of energy-wasting syndrome characterized by fatigue, anorexia, muscle weakness, fat loss, and systemic inflammation. Baicalein, a flavonoid with bioactive properties, has demonstrated the ability to mitigate cardiac and skeletal muscle atrophy in different experimental settings. This effect is achieved through the inhibition of muscle proteolysis, suggesting its potential in preserving skeletal muscle homeostasis. In this study, we investigated the anti-cancer cachexia effects of baicalein in the regulation of muscle and fat wasting, both in vivo and in vitro. Baicalein attenuated body weight loss, including skeletal muscle and white adipose tissue (WAT), in CT26-induced cachectic mice. Moreover, baicalein increased muscle fiber thickness and suppressed the muscle-specific ubiquitin-protease system, including F-box only protein 32 and muscle RING-finger protein-1, by activating AKT phosphorylation both in vivo and in vitro. The use of LY294002, a particular inhibitor of AKT, eliminated the observed impact of baicalein on the improvement of muscle atrophy. In conclusion, baicalein inhibits muscle proteolysis and enhances AKT phosphorylation, indicating its potential role in cancer cachexia-associated muscle atrophy.
Assuntos
Caquexia , Neoplasias do Colo , Flavanonas , Animais , Camundongos , Caquexia/etiologia , Caquexia/prevenção & controle , Caquexia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Neoplasias do Colo/complicaçõesRESUMO
AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.
Assuntos
Catequina , Dieta Hiperlipídica , Melanoma Experimental , Camundongos Endogâmicos C57BL , Atrofia Muscular , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologiaRESUMO
Panax ginseng C.A. Meyer, a widely used traditional medicine in East Asia, shows many beneficial effects on immune function, male erectile dysfunction, cancer, excessive oxidants, and aging issues. However, its effect on benign prostatic hyperplasia (BPH) and its potential in the treatment of side effects related to finasteride (Fi), an FDA-approved drug for BPH, are less known. This study aimed to verify the therapeutic effects of a water extract of P. ginseng (PGWE) on BPH in testosterone propionate (TP)-induced BPH rats and TP-treated RWPE-1 human epithelial cells, and the inhibitory potential on the Fi-induced side effects is also explored. In the TP-induced BPH rat model, PGWE alleviated the pathological markers of BPH such as weight and epithelial thickness of the prostate, and the serum level of dihydrotestosterone. PGWE downregulated androgen-related BPH factors such as 5α-reductase 2 and androgen receptor. PGWE also showed prostatic cell apoptosis accompanied by increased expression of Bax and decreased expression of Bcl-xL and cleaved-caspase 3, respectively, in addition to increasing mitochondrial dynamics in both in vivo and in vitro BPH models. Notably, reduced sperm count, one of the serious side effects of Fi, in the epididymis of BPH rats was recovered with PGWE treatment, suggesting less toxicity to sperm development by PGWE. PGWE also protected against Fi-induced sperm loss when PGWE was administered in combination with Fi without compromising the therapeutic effects of Fi on BPH. Based on these findings, we propose that PGWE could be an alternative therapeutic agent for BPH.
RESUMO
Benign prostate hyperplasia (BPH) is an age-related disease in men characterized by the growth of prostate cells and hyperproliferation of prostate tissue. This condition is closely related to chronic inflammation. In this study, we highlight the therapeutic efficacy of ellagic acid (EA) for BPH by focusing on the AR signaling axis and STAT3. To investigate the effect of EA on BPH, we used EA, a phytochemical abundant in fruits and vegetables, to treat testosterone propionate (TP)-induced BPH rats and RWPE-1 human prostate epithelial cells. The EA treatment reduced prostate weight, prostate epithelial thickness, and serum DHT levels in the TP-induced BPH rat model. In addition, EA improved testicular injury by increasing antioxidant enzymes in testis of the BPH rats. EA reduced the protein levels of AR, 5AR2, and PSA. It also induced apoptosis by regulating Bax, Bcl_xL, cytochrome c, caspase 9, and caspase 3 with increasing mitochondrial dynamics. Furthermore, EA reduced the expression of IL-6, TNF-α, and NF-κB, as well as phosphorylation of STAT3 and IκBα. These findings were also confirmed in TP-treated RWPE-1 cells. Overall, our data provide evidence of the role of EA in improving BPH through inhibition of AR and the STAT3 pathway.
Assuntos
Hiperplasia Prostática , Propionato de Testosterona , Androgênios/farmacologia , Animais , Ácido Elágico/efeitos adversos , Humanos , Hiperplasia/patologia , Masculino , Extratos Vegetais/farmacologia , Próstata/metabolismo , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Propionato de Testosterona/efeitos adversosRESUMO
BACKGROUND: Benign prostatic hyperplasia (BPH) is an age-related disease in adult men. There are two pharmacological treatments for BPH. However, these synthetic materials have various risks, many studies are being conducted to develop new drugs from natural sources. PURPOSE: In this study, we proposed a beneficial effect of Glycyrrhiza uralensis Fischer on the development and progression of BPH, focusing on the androgen receptor (AR) and 5α-reductase 2 (5AR2) signaling axis. METHODS: To explain the therapeutic efficacy of a water extract of G. uralensis (GUWE) for BPH, we used testosterone propionate (TP)-induced BPH rat models and TP-treated RWPE-1 human prostate epithelial cells. RESULTS: In the TP-induced BPH rat models, GUWE reduced the enlarged prostate weight, prostate index, prostate epithelial thickness, and serum DHT levels. In addition, the protein levels of AR and 5AR2 in prostate tissues were significantly decreased by GUWE treatment. Furthermore, GUWE induced apoptosis signaling through an increase of Bcl-2 associated X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and a decrease of B-cell lymphoma-extra-large (Bcl-xL) in prostate tissues of TP-induced BPH rats. These findings were also confirmed in TP-treated RWPE-1 cells. Fi treatment markedly decreased the sperm count in the epididymis of BPH rats, but GUWE treatment did not affect the sperm count, suggesting less toxicity. CONCLUSION: These findings suggested that GUWE reduces the development of BPH by inhibiting AR-5AR2 and activating the apoptosis signaling pathway. Furthermore, unlike finasteride, GUWE did not affect sperm count. Therefore, we suggest that GUWE has a potential as a safer alternative option for BPH treatment.
Assuntos
Glycyrrhiza uralensis , Hiperplasia Prostática , Propionato de Testosterona , Animais , Apoptose , Colestenona 5 alfa-Redutase , Humanos , Masculino , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Sementes , TestosteronaRESUMO
Obesity is a burden to global health. Non-shivering thermogenesis of brown adipose tissue (BAT) and white adipose tissue (WAT) is a novel strategy for obesity treatment. Anmyungambi (AMGB) decoction is a multi-herb decoction with clinical anti-obesity effects. Here, we show the effects of AMGB decoction using high-fat diet (HFD)-fed C57BL6/J mice. All four versions of AMGB decoction (100 mg/kg/day, oral gavage for 28 days) suppressed body weight gain and obesity-related blood parameters in the HFD-fed obese mice. They also inhibited adipogenesis and induced lipolysis in inguinal WAT (iWAT). Especially, the AMGB-4 with 2:1:3:3 composition was the most effective; thus, further studies were performed with the AMGB-4 decoction. The AMGB-4 decoction displayed a dose-dependent body weight gain suppression. Serum triglyceride, total cholesterol, and blood glucose decreased as well. In epididymal WAT, iWAT, and BAT, the AMGB-4 decoction increased lipolysis markers. Additionally, the AMGB-4 decoction-fed mice showed an increased non-shivering thermogenic program in BAT and iWAT. Excessive reactive oxygen species (ROS) and suppressed antioxidative factors induced by the HFD feeding were also altered to normal levels by the AMGB-4 decoction treatment. Overall, our study supports the clinical use of AMGB decoction for obesity treatment by studying its mechanisms. AMGB decoction alleviates obesity through the activation of the lipolysis-thermogenesis program and the elimination of pathological ROS in thermogenic adipose tissues.
RESUMO
The purpose of this study is to estimate the single nucleotide polymorphism (SNP) effect for pH values affecting Berkshire meat quality. A total of 39,603 SNPs from 1,978 heads after quality control and 882 pH values were used estimate SNP effect by single step genomic best linear unbiased prediction (ssGBLUP) method. The average physical distance between adjacent SNP pairs was 61.7kbp and the number and proportion of SNPs whose minor allele frequency was below 10% were 9,573 and 24.2%, respectively. The average of observed heterozygosity and polymorphic information content was 0.32 ± 0.16 and 0.26 ± 0.11, respectively and the estimate for average linkage disequilibrium was 0.40. The heritability of pH45m and pH24h were 0.10 and 0.15 respectively. SNPs with an absolute value more than 4 standard deviations from the mean were selected as threshold markers, among the selected SNPs, protein-coding genes of pH45m and pH24h were detected in 6 and 4 SNPs, respectively. The distribution of coding genes
RESUMO
The extract of the Gardenia jasminoides fruit (GJFE) can been consumed as an herbal tea or used as a yellow dye. Recently, studies report that GFJE exerts inhibitory effects on lipid accumulation and adipogenesis in white adipocytes. We evaluated the thermogenic actions of GJFE by focusing on mitochondrial activation and studying the underlying mechanisms. To investigate the role of GJFE on thermogenesis in mice, we used an acute cold exposure model. After 2 weeks of feeding, the cold tolerance of GJFE-fed mice was notably increased compared to PBS-fed mice. This was due to an increase in thermogenic proteins in the inguinal white adipose tissue of the cold-exposed mice. Moreover, GJFE significantly increased thermogenic factors such as peroxisome proliferator-activated receptor gamma (PPARγ), uncoupling protein 1 (UCP1), and PPARγ coactivator 1 alpha (PGC1α) in vitro as well. Factors related to mitochondrial abundance and functions were also induced by GJFE in white and beige adipocytes. However, the treatment of PPARγ inhibitor abolished the GJFE-induced changes, indicating that activation of PPARγ is critical for the thermogenic effect of GJFE. In conclusion, GJFE induces thermogenic action by activating mitochondrial function via PPARγ activation. Through these findings, we suggest GJFE as a potential anti-obesity agent with a novel mechanism involving thermogenic action in white adipocytes.