Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 34: 131-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21438684

RESUMO

Failure of axon regeneration after central nervous system (CNS) injuries results in permanent functional deficits. Numerous studies in the past suggested that blocking extracellular inhibitory influences alone is insufficient to allow the majority of injured axons to regenerate, pointing to the importance of revisiting the hypothesis that diminished intrinsic regenerative ability critically underlies regeneration failure. Recent studies in different species and using different injury models have started to reveal important cellular and molecular mechanisms within neurons that govern axon regeneration. This review summarizes these observations and discusses possible strategies for stimulating axon regeneration and perhaps functional recovery after CNS injury.


Assuntos
Axônios/fisiologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/fisiopatologia , Regeneração Nervosa/fisiologia , Neurônios/patologia , Animais , Transporte Axonal/fisiologia , AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/etiologia , Modelos Neurológicos , Neurônios/classificação , Neurônios/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
2.
Nat Neurosci ; 13(9): 1075-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20694004

RESUMO

Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. We found that PTEN/mTOR are critical for controlling the regenerative capacity of mouse corticospinal neurons. After development, the regrowth potential of CST axons was lost and this was accompanied by a downregulation of mTOR activity in corticospinal neurons. Axonal injury further diminished neuronal mTOR activity in these neurons. Forced upregulation of mTOR activity in corticospinal neurons by conditional deletion of Pten, a negative regulator of mTOR, enhanced compensatory sprouting of uninjured CST axons and enabled successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possessed the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury.


Assuntos
Regeneração Nervosa/fisiologia , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Tratos Piramidais/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Vértebras Cervicais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Bulbo/fisiologia , Bulbo/fisiopatologia , Camundongos , Camundongos Transgênicos , Neurônios/ultraestrutura , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/metabolismo , Tratos Piramidais/fisiopatologia , Tratos Piramidais/ultraestrutura , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/fisiopatologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Serina-Treonina Quinases TOR , Vértebras Torácicas
3.
Neuron ; 64(5): 617-23, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20005819

RESUMO

Axon regeneration failure accounts for permanent functional deficits following CNS injury in adult mammals. However, the underlying mechanisms remain elusive. In analyzing axon regeneration in different mutant mouse lines, we discovered that deletion of suppressor of cytokine signaling 3 (SOCS3) in adult retinal ganglion cells (RGCs) promotes robust regeneration of injured optic nerve axons. This regeneration-promoting effect is efficiently blocked in SOCS3-gp130 double-knockout mice, suggesting that SOCS3 deletion promotes axon regeneration via a gp130-dependent pathway. Consistently, a transient upregulation of ciliary neurotrophic factor (CNTF) was observed within the retina following optic nerve injury. Intravitreal application of CNTF further enhances axon regeneration from SOCS3-deleted RGCs. Together, our results suggest that compromised responsiveness to injury-induced growth factors in mature neurons contributes significantly to regeneration failure. Thus, developing strategies to modulate negative signaling regulators may be an efficient strategy of promoting axon regeneration after CNS injury.


Assuntos
Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/fisiopatologia , Proteínas Supressoras da Sinalização de Citocina/deficiência , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Proteínas de Transporte/metabolismo , Toxina da Cólera/metabolismo , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/farmacologia , Receptor gp130 de Citocina/deficiência , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Injeções Intraventriculares/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/genética , Técnicas de Cultura de Órgãos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Serina-Treonina Quinases TOR , Fatores de Tempo , Tubulina (Proteína)/metabolismo
4.
Science ; 322(5903): 963-6, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18988856

RESUMO

The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.


Assuntos
Axônios/fisiologia , Proteínas de Transporte/metabolismo , Regeneração Nervosa , PTEN Fosfo-Hidrolase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Animais , Axotomia , Sobrevivência Celular , Camundongos , Camundongos Knockout , Compressão Nervosa , Nervo Óptico , PTEN Fosfo-Hidrolase/genética , Biossíntese de Proteínas , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA