Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(35): 17345-17354, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31409705

RESUMO

The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl- channels and Cl-/H+ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluex, could explain the transport cycle of CLC-type Cl-/H+ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluex has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae Thus, we aimed to investigate further the heterogeneity of Gluex-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluex mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the "Midlow" conformation. We also found that an extra anion can be located above the external Cl--binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl--binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluex can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.


Assuntos
Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Ácido Glutâmico/genética , Mutação , Substituição de Aminoácidos , Antiporters/química , Sítios de Ligação , Transporte Biológico , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Ácido Glutâmico/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica
2.
Adv Mater ; 35(42): e2303655, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433455

RESUMO

Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.


Assuntos
Quadruplex G , Canais Iônicos , Canais Iônicos/metabolismo , Transporte Biológico , Cátions/química , Fenômenos Fisiológicos Celulares , Potássio
3.
J Mol Biol ; 433(8): 166886, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33617898

RESUMO

CLC-ec1 is a Cl-/H+ antiporter that forms stable homodimers in lipid bilayers, with a free energy of -10.9 kcal/mol in 2:1 POPE/POPG lipid bilayers. The dimerization interface is formed by four transmembrane helices: H, I, P and Q, that are lined by non-polar side-chains that come in close contact, yet it is unclear as to whether their interactions drive dimerization. To investigate whether non-polar side-chains are required for dimer assembly, we designed a series of constructs where side-chain packing in the dimer state is significantly reduced by making 4-5 alanine substitutions along each helix (H-ala, I-ala, P-ala, Q-ala). All constructs are functional and three purify as stable dimers in detergent micelles despite the removal of significant side-chain interactions. On the other hand, H-ala shows the unique behavior of purifying as a mixture of monomers and dimers, followed by a rapid and complete conversion to monomers. In lipid bilayers, all four constructs are monomeric as examined by single-molecule photobleaching analysis. Further study of the H-helix shows that the single mutation L194A is sufficient to yield monomeric CLC-ec1 in detergent micelles and lipid bilayers. X-ray crystal structures of L194A reveal the protein re-assembles to form dimers, with a structure that is identical to wild-type. Altogether, these results demonstrate that non-polar membrane embedded side-chains play an important role in defining dimer stability, but the stoichiometry is highly contextual to the solvent environment. Furthermore, we discovered that L194 is a molecular hot-spot for defining dimerization of CLC-ec1.


Assuntos
Antiporters/química , Dimerização , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Antiporters/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Micelas , Mutação , Imagem Individual de Molécula
4.
Open Biol ; 11(12): 210103, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847774

RESUMO

MLC1 is a membrane protein mainly expressed in astrocytes, and genetic mutations lead to the development of a leukodystrophy, megalencephalic leukoencephalopathy with subcortical cysts disease. Currently, the biochemical properties of the MLC1 protein are largely unknown. In this study, we aimed to characterize the transmembrane (TM) topology and oligomeric nature of the MLC1 protein. Systematic immunofluorescence staining data revealed that the MLC1 protein has eight TM domains and that both the N- and C-terminus face the cytoplasm. We found that MLC1 can be purified as an oligomer and could form a trimeric complex in both detergent micelles and reconstituted proteoliposomes. Additionally, a single-molecule photobleaching experiment showed that MLC1 protein complexes could consist of three MLC1 monomers in the reconstituted proteoliposomes. These results can provide a basis for both the high-resolution structural determination and functional characterization of the MLC1 protein.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Micelas , Domínios Proteicos , Multimerização Proteica , Proteolipídeos/metabolismo , Imagem Individual de Molécula
5.
Sci Adv ; 6(35): eaba4996, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923625

RESUMO

Connexin family proteins assemble into hexameric channels called hemichannels/connexons, which function as transmembrane channels or dock together to form gap junction intercellular channels (GJIChs). We determined the cryo-electron microscopy structures of human connexin 31.3 (Cx31.3)/GJC3 hemichannels in the presence and absence of calcium ions and with a hearing-loss mutation R15G at 2.3-, 2.5-, and 2.6-Å resolutions, respectively. Compared with available structures of GJICh in open conformation, Cx31.3 hemichannel shows substantial structural changes of highly conserved regions in the connexin family, including opening of calcium ion-binding tunnels, reorganization of salt-bridge networks, exposure of lipid-binding sites, and collocation of amino-terminal helices at the cytoplasmic entrance. We also found that the hemichannel has a pore with a diameter of ~8 Å and selectively transports chloride ions. Our study provides structural insights into the permeant selectivity of Cx31.3 hemichannel.


Assuntos
Cálcio , Conexinas , Cálcio/metabolismo , Conexinas/metabolismo , Microscopia Crioeletrônica , Junções Comunicantes/metabolismo , Humanos , Canais Iônicos/química , Íons/metabolismo , Proteínas do Tecido Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA