RESUMO
Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.
Assuntos
Neoplasias Ósseas , Flavonoides , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-aktRESUMO
Oral squamous cell carcinoma (OSCC) accounts for about 90% of all head and neck cancers, the prognosis is very poor, and there are no effective targeted therapies. Herein, we isolated Machilin D (Mach), a lignin, from the roots of Saururus chinensis (S. chinensis) and assessed its inhibitory effects on OSCC. Herein, Mach had significant cytotoxicity against human OSCC cells and showed inhibitory effects against cell adhesion, migration, and invasion by inhibiting adhesion molecules, including the FAK/Src pathway. Mach suppressed the PI3K/AKT/mTOR/p70S6K pathway and MAPKs, leading to apoptotic cell death. We investigated other modes of programmed cell death in these cells and found that Mach increased LC3I/II and Beclin1 and decreased p62, leading to autophagosomes, and suppressed the necroptosis-regulatory proteins RIP1 and MLKL. Our findings provide evidence that the inhibitory effects of Mach against human YD-10B OSCC cells are related to the promotion of apoptosis and autophagy and inhibition of necroptosis and are mediated via focal adhesion molecules.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Necroptose , Neoplasias Bucais/patologia , Apoptose , Autofagia/fisiologia , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3ß, ß-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.
Assuntos
Glucosídeos , Osteogênese , Diferenciação Celular , Glucosídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Osteoblastos/metabolismoRESUMO
Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we investigated the effects of SCOP on the osteogenic processes using MC3T3-E1 pre-osteoblasts in in vitro cell systems. SCOP (C11 H10 O4 , > 99.17%) was purified and identified from A. capillaries. SCOP (0.1 to 100 µM concentrations) did not have cytotoxic effects in pre-osteoblasts; however, it promoted alkaline phosphatase (ALP) staining and activity, and mineralized nodule formation under early and late osteogenic induction. SCOP elevated osteogenic signals through the bone morphogenetic protein 2 (BMP2)-Smad1/5/8 pathway, leading to the increased expression of runt-related transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 (MMP13). SCOP also induced the non-canonical BMP2-MAPKs pathway, but not the Wnt3a-ß-catenin pathway. Moreover, SCOP promoted autophagy, migration and adhesion under the osteogenic induction. Overall, the findings of this study demonstrated that SCOP has osteogenic effects associated with cell differentiation, adhesion, migration, autophagy and mineralization.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Autofagia , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cumarínicos/farmacologia , Osteoblastos/metabolismoRESUMO
BMP2 is clinically used as an ectopic bone inducer and plays a significant role in bone development, formation, and diseases. Chitinase 3-like 1 protein (Chi3L1) is found in the skeletal system. However, Chi3L1-mediated bone metabolism and aging-related bone erosion via BMP2 signaling have not yet been demonstrated. Herein, Chi3L1 increased BMP2-induced osteoblast differentiation in mesenchymal precursor cells and human primary osteoblasts. Chi3L1KO(-/-) showed abnormal bone development, and primary osteoblasts isolated from Chi3L1KO(-/-) exhibited impaired osteoblast differentiation and maturation. Chi3L1 also potentiated BMP2 signaling and RUNX2 expression in primary osteoblasts. Chi3L1 interacted with BMPRIa, which increased the surface expression of BMPRIa and promoted BMP2 signaling to induce osteoblast differentiation. Chi3L1KO(-/-) mice showed bone formation reduced with a decrease in RUNX2 expression in calvarial defects. Chi3L1KO(-/-) mice exhibited aging-related osteoporotic bone loss with decreases in the levels of RUNX2 and OPG, while serum PYD level and osteoclast number increased. Chi3L1 increased OPG via non-canonical BMP2 signaling in osteoblasts, which suppressed osteoclastogenesis in BMMs. Furthermore, ROC analysis showed that serum Chi3L1 level clinically decreased in osteoporosis patients. Our findings demonstrate that Chi3L1 promotes bone formation, suppresses osteoclastogenesis, and prevents aging-related osteoporosis.
Assuntos
Quitinases , Osteoporose , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Quitinases/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Camundongos , Osteoblastos/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismoRESUMO
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Assuntos
Paeonia , Estilbenos , Osteogênese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Autofagia , Paeonia/metabolismo , Estilbenos/farmacologia , Diferenciação CelularRESUMO
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm with frequent metastasis and high mortality in the oral cavity. Plant-derived natural compounds are actively progressing as a trend for cancer treatment. Latifolin (Latif), is a natural flavonoid isolated from the heartwood of Dalbergia odorifera T. Chen (D. odorifera) has been known to have beneficial effects on anti-aging, anti-carcinogenic, anti-inflammatory, and cardio-protective activities. However, the anti-cancer effects of Latif are unknown in OSCC. Herein, as a result of analysis in terms of the aggressive features of OSCCs, we found that Latif significantly inhibited the cell proliferation of human YD-8 and YD-10B OSCCs, and caused the anti-metastatic activities by effectively blocking cell migration, invasion, and adhesion via the inactivation of focal adhesion kinase (FAK)/non-receptor tyrosine kinase (Src). Moreover, we found that Latif induced apoptotic cell death to suppress the cell survival and proliferation of YD-10B OSCCs by targeting PI3K/AKT/mTOR/p70S6K signaling. Finally, we analyzed in terms of autophagy and necroptosis, which are other mechanisms of programmed cell death and survival compared to apoptosis in YD-10B OSCCs. We found that Latif suppressed autophagic-related proteins and autophagosome formation, and also Latif inhibited necroptosis by dephosphorylating necroptosis-regulatory proteins (RIP1, RIP3, and MLKL). Given these findings, our results provided new evidence for Latif's biological effect and mechanism in YD-10B OSCCs, suggesting that Latif may be a new candidate for patients with OSCCs.
Assuntos
Carcinoma de Células Escamosas , Dalbergia , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Necroptose , Carcinoma de Células Escamosas de Cabeça e Pescoço , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases , Apoptose , AutofagiaRESUMO
Triterpenes are a diverse group of natural compounds found in plants. Soyasapogenol B (SoyB) from Arachis hypogaea (peanut) has various pharmacological properties. This study aimed to elucidate the pharmacological properties and mechanisms of SoyB in bone-forming cells. In the present study, 1-20 µM of SoyB showed no cell proliferation effects, whereas 30-100 µM of SoyB increased cell proliferation in MC3T3-E1 cells. Next, osteoblast differentiation was analyzed, and it was found that SoyB enhanced ALP staining and activity and bone mineralization. SoyB also induced RUNX2 expression in the nucleus with the increased phosphorylation of Smad1/5/8 and JNK2 during osteoblast differentiation. In addition, SoyB-mediated osteoblast differentiation was not associated with autophagy and necroptosis. Furthermore, SoyB increased the rate of cell migration and adhesion with the upregulation of MMP13 levels during osteoblast differentiation. The findings of this study provide new evidence that SoyB possesses biological effects in bone-forming cells and suggest a potentially beneficial role for peanut-based foods.
Assuntos
Arachis , Triterpenos , Autofagia , Diferenciação Celular , Linhagem Celular , Necroptose , Ácido Oleanólico/análogos & derivados , Osteoblastos/metabolismo , Saponinas , Triterpenos/metabolismo , Triterpenos/farmacologiaRESUMO
Root bark of Dictamnus dasycarpus Turcz. has been widely used as a traditional medicine and is a well-known anti-inflammatory agent. We isolated limonoid triterpene, obacunone (Obac) from the dried root bark of D. dasycarpus. Obac has been reported to exhibit varieties of biological activities including anti-inflammatory, anti-cancer, and anti-oxidant effects. This study aimed to investigate the beneficial effects and biological mechanisms of Obac in osteoblast differentiation and bone matrix mineralization. In the present study, Obac at concentrations ranging from 1 to 100 µM showed no proliferation effects in MC3T3-E1. The treatment of Obac (1 and 10 µM) increased wound healing and migration rates in a dose-dependent manner. Alkaline phosphatase (ALP) staining and activity showed that Obac (1 and 10 µM) enhanced early osteoblast differentiation in a dose-dependent manner. Obac also increased late osteoblast differentiation in a dose-dependent manner, as indicated by the mineralized nodule formation of ARS staining. The effects of Obac on osteoblast differentiation was validated by the levels of mRNAs encoding the bone differentiation markers, including Alp, bone sialoprotein (Bsp), osteopontin (Opn), and osteocalcin (Ocn). Obac increased the expression of bone morphogenetic protein (BMP), and the phosphorylation of smad1/5/8, and the expression of runt-related transcription factor 2 (RUNX2); Obac also inhibited GSK3ß and upregulated the protein level of ß-catenin in a dose-dependent manner during osteoblast differentiation. Obac-mediated osteoblast differentiation was attenuated by a BMP2 inhibitor, Noggin and a Wnt/ß-catenin inhibitor, Dickkopf-1 (Dkk1) with the abolishment of RUNX2 expression and nuclear accumulation by Obac. Taken together, the findings of this study demonstrate that Obac has pharmacological and biological activates to promote osteoblast differentiation and bone mineralization through BMP2, ß-catenin, and RUNX2 pathways, and suggest that Obac might be a therapeutic effect for the treatment and prevention of bone diseases such as osteoporosis and periodontitis.
Assuntos
Benzoxepinas/farmacologia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Limoninas/farmacologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and ß-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.
Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glicosídeos/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/farmacologia , Biomarcadores , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicosídeos/química , Humanos , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética/efeitos adversos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/química , Via de Sinalização WntRESUMO
Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 µM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 µM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 µM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 µM) increased the bone morphogenetic protein (BMP)-Smad1/5/8 and Wnt-ß-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 µM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.
Assuntos
Acetofenonas/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Wnt3/metabolismoRESUMO
Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-ß-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3ß, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Glucosídeos/farmacologia , Isoflavonas/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Astragalus propinquus/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucosídeos/isolamento & purificação , Glucosídeos/metabolismo , Humanos , Isoflavonas/isolamento & purificação , Isoflavonas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Células NIH 3T3 , Osteoblastos/metabolismo , Osteogênese/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologiaRESUMO
BACKGROUND: Chitinase 3 like 1 protein (Chi3L1) is expressed in several cancers, and a few evidences suggest that the secreted Chi3L1 contributes to tumor development. However, the molecular mechanisms of intracellular Chi3L1 are unknown in the lung tumor development. METHODS: In the present study, we generated Chi3L1 knockout mice (Chi3L1KO(-/-)) using CRISPR/Cas9 system to investigate the role of Chi3L1 on lung tumorigenesis. RESULTS: We established lung metastasis induced by i.v. injections of B16F10 in Chi3L1KO(-/-). The lung tumor nodules were significantly reduced in Chi3L1KO(-/-) and protein levels of p53, p21, BAX, and cleaved-caspase 3 were significantly increased in Chi3L1KO(-/-), while protein levels of cyclin E1, CDK2, and phsphorylation of STAT3 were decreased in Chi3L1KO(-/-). Allograft mice inoculated with B16F10 also suppressed tumor growth and increased p53 and its target proteins including p21 and BAX. In addition, knockdown of Chi3L1 in lung cancer cells inhibited lung cancer cell growth and upregulated p53 expression with p21 and BAX, and a decrease in phosphorylation of STAT3. Furthermore, we found that intracellular Chi3L1 physically interacted and colocalized with p53 to inhibit its protein stability and transcriptional activity for target genes related with cell cycle arrest and apoptosis. In lung tumor patient, we clinically found that Chi3L1 expression was upregulated with a decrease in p53 expression, as well as we validated that intracellular Chi3L1 was colocalized, reversely expressed, and physically interacted with p53, which results in suppression of the expression and function of p53 in lung tumor patient. CONCLUSIONS: Our studies suggest that intracellular Chi3L1 plays a critical role in the lung tumorigenesis by regulating its novel target protein, p53 in both an in vitro and in vivo system.
Assuntos
Carcinogênese/patologia , Proteína 1 Semelhante à Quitinase-3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/metabolismo , Aloenxertos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Proteína 1 Semelhante à Quitinase-3/química , Regulação para Baixo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Ligação Proteica , Estabilidade Proteica , Transcrição Gênica , UbiquitinaçãoRESUMO
PURPOSE: We investigated the relationship of physical activity with dietary habits and quality of life (QoL) in breast cancer survivors in accordance with the recommendations of the American Cancer Society. METHODS: Data of 928 breast cancer survivors were obtained from the KROG 14-09 study to measure QoL in early phase after adjuvant radiotherapy. According to the extent of physical activity, survivors were divided into four groups: inactivity (0-149 min/week, N = 144), regular activity (150-450 min/week, N = 309), moderate activity (451-900 min/week, N = 229), and marked activity (901-1800 min/week, N = 164) excluding hyperactivity (> 1800 min/week, N = 82) as it is a difficult condition to recommend to survivors. Global physical activity questionnaire, 5-dimensional questionnaire by EuroQoL (EQ-5D-3L), QoL Questionnaire-breast cancer (QLQ-BR23) from EORTC, and dietary habits were surveyed. A linear-to-linear association test for EQ-5D-3L and Kruskal-Wallis analysis for QLQ-BR23 and dietary habit were conducted. RESULTS: Overall, 15.5% respondents (144/928) were classified as physically inactive. The trends of frequent intake of fruits (p = 0.001) and vegetable (p = 0.005) and reluctance toward fatty food (p < 0.001) were observed in physically active groups. Mobility (p = 0.021) and anxiety (p = 0.030) of EQ-5D-3L, and systemic therapy side effect (p = 0.027) and future perspective (p = 0.008) of QLQ-BR23 were better in physically active groups besides body image (p = 0.003) for the survivors with breast-conserving surgery. However, moderate and marked activities did not further improve QoL than regular activity. CONCLUSION: Physicians and care-givers have to pay attention to inactive survivors to boost their physical activity, thereby facilitating a better QoL and dietary habit.
Assuntos
Neoplasias da Mama/psicologia , Neoplasias da Mama/terapia , Exercício Físico/psicologia , Comportamento Alimentar/psicologia , Qualidade de Vida/psicologia , Adolescente , Adulto , Sobreviventes de Câncer , Feminino , Humanos , Inquéritos e Questionários , Adulto JovemRESUMO
The seeds (nutmegs) of Myristica fragrans Houtt have been used as popular spices and traditional medicine to treat a variety of diseases. A phenolic compound, ((7S)-8'-(benzo[3',4']dioxol-1'-yl)-7-hydroxypropyl)benzene-2,4-diol (7-HYB) was isolated from the seeds of M. fragrans. This study aimed to investigate the anabolic effects of 7-HYB in osteogenesis and bone mineralization. In the present study, 7-HYB promotes the early and late differentiation of MC3T3-E1 preosteoblasts. 7-HYB also elevated cell migration rate during differentiation of the preosteoblasts with the increased phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, p38, and JNK. In addition, 7-HYB induced the protein level of BMP2, the phosphorylation of Smad1/5/8, and the expression of RUNX2. 7-HYB also inhibited GSK3ß and subsequently increased the level of ß-catenin. However, in bone marrow macrophages (BMMs), 7-HYB has no biological effects in cell viability, TRAP-positive multinuclear osteoclasts, and gene expression (c-Fos and NF-ATc1) in receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Our findings suggest that 7-HYB plays an important role in osteoblast differentiation through the BMP2 and ß-catenin signaling pathway. It also indicates that 7-HYB might have a therapeutic effect for the treatment of bone diseases such as osteoporosis and periodontitis.
Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Movimento Celular , Myristica/química , Osteoblastos/patologia , Extratos Vegetais/farmacologia , beta Catenina/metabolismo , Animais , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , beta Catenina/genéticaRESUMO
BACKGROUND: (E)-methyl-cinnamate (EMC), a phytochemical constituent isolated from Alpinia katsumadai Hayata, is a natural flavor compound with anti-inflammatory properties, which is widely used in the food and commodity industry. However, the pharmacological effects of methyl-cinnamate on pre-osteoblasts remain unknown. This study aimed to investigate the pharmacological effects and mechanisms of EMC in pre-osteoblast MC3T3-E1 cells (pre-osteoblasts). METHODS: Cell viability and apoptosis were evaluated using the MTT assay and TUNEL staining. Cell migration and osteoblast differentiation were examined using migration assays, as well as alkaline phosphatase activity and staining assays. Western blot analysis was used to examine intracellular signaling pathways and apoptotic proteins. RESULTS: EMC decreased cell viability with morphological changes and increased apoptosis in pre-osteoblasts. EMC also induced the cleavage of Poly (ADP-ribose) polymerase (PARP) and caspase-3 and reduced the expression of anti-apoptotic proteins. In addition, EMC increased TUNEL-positive cells in pre-osteoblasts, decreased the activation of mitogen-activated protein kinases, and suppressed cell migration rate in pre-osteoblasts. Subsequently, EMC inhibited the osteoblast differentiation of pre-osteoblasts, as assessed by alkaline phosphatase staining and activity assays. CONCLUSION: These findings demonstrate that EMC has a pharmacological and biological role in cell survival, migration, and osteoblast differentiation. It suggests that EMC might be a potential phytomedicine for treating abnormalities of osteoblast function in bone diseases.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cinamatos/farmacologia , Osteogênese/efeitos dos fármacos , Alpinia/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Osteoblastos , Osteogênese/fisiologia , Compostos Fitoquímicos/farmacologia , Transdução de SinaisRESUMO
BACKGROUND: Plant extracts have long been regarded as useful medicines in the treatment of human diseases. Rubia cordifolia Nakai has been used as a traditional medicine, as it has pharmacological properties such as antioxidant and anti-inflammatory activity. However, the biological functions of TMARg, isolated from the roots of R. cordifolia, in osteoblast differentiation remain unknown. This study was performed to investigate the pharmacological effects and intracellular signaling of TMARg in the osteoblast differentiation of pre-osteoblast MC3T3-E1 cells and mesenchymal precursor C2C12 cells. METHODS: Cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP), and by staining it with Alizarin red S (ARS). Cell migration was determined by using migration assays. Western blot analysis and immunocytochemical analysis were used to examine the intracellular signaling pathways and differentiation proteins. RESULTS: In the present study, TMARg showed no cytotoxicity and increased the osteoblast differentiation in pre-osteoblasts, as assessed from the alkaline phosphate (ALP) staining and activity and ARS staining. TMARg also induced BMP2 expression and increased the p-smad1/5/8-RUNX2 and ß-catenin pathways in both MC3T3-E1 and C2C12 cells. Furthermore, TMARg activated mitogen-activated protein kinases (MAPKs) and increased the cell migration rate. In addition, the TMARg-mediated osteoblast differentiation was suppressed by BMP and Wnt inhibitors with the downregulation of BMP2 expression. CONCLUSION: These findings demonstrate that TMARg exerts pharmacological and biological effects on osteoblast differentiation through the activation of BMP2 and ß-catenin signaling pathways, and suggest that TMARg might be a potential phytomedicine for the treatment of bone diseases.
Assuntos
Antraquinonas/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Casca de Planta/química , Rubia/química , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Antraquinonas/química , Linhagem Celular , CamundongosRESUMO
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 µM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 µM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 µM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased ß-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Assuntos
Calcificação Fisiológica , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicosídeos/farmacologia , Lignanas/farmacologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Styrax/químicaRESUMO
We evaluated the dietary habits of breast cancer survivors and investigated the relationship with quality of life (QoL), with 1,156 survivors recruited from 17 institutions. We used the Questionnaire Survey of Dietary Habits of Korean Adults (Q-DH-KOR) comprising 25 questions. The following indices were derived as follows: (1) quality of healthy dietary habits (Q-HD)-eight questions on number of meals, regularity, quantity, duration, skipping breakfast, dinner with companion(s), overeating and late-night snacks; (2) habits of nutritional balance (H-NB)-questions on consuming five food categories (grains, fruits, proteins, vegetables and dairy products); and (3) habits of unhealthy foods (H-UF)-questions on consuming three food categories (fatty, instant and fast foods). The times and regularity of meals, frequency of skipping breakfast, dinner with companion(s) and overeating were better in groups with high symptomatic and functional QoL. Symptomatic QoL positively affected Q-HD and H-NB (p < 0.001 and p = 0.024 respectively) and negatively affected H-UF (p = 0.02). Breast cancer survivors more frequently ate from the fruit, protein and vegetable categories than did the control group, with lower H-UF and higher Q-HD values (p < 0.001 and p < 0.001 respectively). Our findings supported the relationship between QoL and dietary habit and showed healthier dietary habits of breast cancer survivors than controls.
Assuntos
Neoplasias da Mama/psicologia , Sobreviventes de Câncer/psicologia , Comportamento Alimentar/psicologia , Adulto , Distribuição por Idade , Idoso , Neoplasias da Mama/etnologia , Estudos de Casos e Controles , Estudos Transversais , Dieta Saudável/etnologia , Comportamento Alimentar/etnologia , Feminino , Preferências Alimentares/etnologia , Humanos , Pessoa de Meia-Idade , Qualidade de Vida , República da Coreia/etnologia , Inquéritos e QuestionáriosRESUMO
PURPOSE: In correlation with the nodal status in the era of modern radiotherapy, the chest wall recurrence (CWR) rate was investigated in pT1-2N0-1 breast cancer patients after a mastectomy without post-mastectomy radiotherapy (PMRT). METHODS: The data from the patients participating in two South Korean multi-institutional studies (KROG 14-22; N = 1842 and KROG 14-23; N = 1382) were analyzed. In total, 3224 pT1-2N0-1 breast cancer patients who underwent mastectomy without PMRT were analyzed. RESULTS: The median follow-up time was 72.2 months (range 0.8-125.2 months). The overall CWRs during the follow-up period were 1.68% in N0 patients and 2.82% in N1 patients. There was no statistically significant difference in 5-year and 10-year CWR-free survival (CWRFS) between the N0 and N1 patients. Of the 70 patients with CWR, 33 (1% of all the patients) had isolated CWR, and the 10-year overall survival rate in this group was 96.9%. After the propensity score matching of the N0 and N1 groups, there was still no difference in CWRFS by nodal status. CONCLUSIONS: The incidence of CWR in pT1-2N0-1 breast cancer patients is very low, especially with isolated recurrence. Also, the obtained data showed that the nodal status had no impact on CWRFS.