Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(16): e2209788, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750416

RESUMO

The strain applied to transition metal dichalcogenides (TMDs) reduces their energy bandgap, and local strains result in a funnel-like band structure in which funneled excitons move toward the most strained region. Herein, a funnel device based on asymmetrically strained WS2 and MoS2 is reported. Asymmetric strains are induced by transferring the TMD flakes onto a fork-shaped SU-8 microstructure. Raman and photoluminescence spectra peaks are shifted according to the morphology of the SU-8 microstructure, indicating the application of asymmetric strains to the TMDs. To investigate whether funneled excitons can be converted to electrical currents, various devices are constructed by depositing symmetric and asymmetric electrodes onto the strained TMDs. The scanning photocurrent mapping images follow a fork-shaped pattern, indicating probable conversion of the funneled excitons into electrical currents. In the case of the funnel devices with asymmetric Au and Al electrodes, short-circuit current (ISC ) of WS2 is enhanced by the strains, whereas ISC of MoS2 is suppressed because the Schottky barrier lowers with increasing strain for the MoS2 . These results demonstrate that the funnel devices can be implemented using asymmetrically strained TMDs and the effect of strains on the Schottky barrier is dependent on the TMD used.

2.
Nanoscale Adv ; 3(17): 4952-4960, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36132353

RESUMO

van der Waals heterostructures composed of two-dimensional materials vertically stacked have been extensively studied to develop various multifunctional devices. Here, we report WSe2/graphene heterostructure devices with a top floating gate that can serve as multifunctional devices. They exhibit gate-controlled rectification inversion, rectified nonvolatile memory effects, and multilevel optoelectronic memory effects. Depending on the polarity of the gate voltage pulses (V Gp), electrons or holes can be trapped in the floating gate, resulting in rectified nonvolatile memory properties. Furthermore, upon repeated illumination with laser pulses, positive or negative staircase photoconductivity is observed depending on the history of V Gp, which is ascribed to the tunneling of electrons or holes between the WSe2 channel and the floating gate. These multifunctional devices can be used to emulate excitatory and inhibitory synapses that have different neurotransmitters. Various synaptic functions, such as potentiation/depression curves and spike-timing-dependent plasticity, have been also implemented using these devices. In particular, 128 optoelectronic memory states with nonlinearity less than 1 can be achieved by controlling applied laser pulses and V Gp, suggesting that the WSe2/graphene heterostructure devices with a top floating gate can be applied to optoelectronic synapse devices.

3.
Lab Chip ; 21(5): 951-961, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33475100

RESUMO

Modularity is a key feature of structural and functional brain networks. However, the association between the structure and function of modular brain networks has not been revealed. We constructed three types of modular cortical networks in vitro and investigated their neuronal activities. The modular networks comprising 4, 3, or 2 modules were constructed using polydimethylsiloxane (PDMS) microstructures fabricated directly on a multi-electrode array (MEA) without transfer. The 4-module network had the strongest modular connectivity, followed by the 3-module and 2-module networks. To investigate how neuronal activities were affected by the modular network structure, spontaneous neuronal activities were recorded on different days in vitro and analyzed based on spike amplitudes, network bursts, and the propagation properties of individual spikes. Different characteristics were observed depending on the network topology and modular connectivity. Moreover, when an electrode was stimulated by biphasic voltage pulses, bursts were elicited for the 4-module network, whereas spikes were elicited for the 3-module and 2-module networks. Direct fabrication of the PDMS microstructures on the MEA without transfer allows microscale construction of modular networks and high-density functional recording; therefore, the technique utilizing the PDMS microstructures can be applied to the systematic study of the dynamics of modular neuronal networks in vitro.


Assuntos
Rede Nervosa , Neurônios , Encéfalo
4.
ACS Appl Mater Interfaces ; 11(28): 25306-25312, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268292

RESUMO

Optoelectronic memory devices, whose states can be controlled using electrical optical signals, are receiving much attention for their potential applications in image sensing and parallel data transmission and processes. Here, we report MoS2-based devices with top floating gates of Au, graphene, and MoS2. Unlike conventional floating gate memory devices, our devices have the photoresponsive floating gate at the top, acting as a charge trapping layer. Stable and reliable switching with an on/off ratio of ∼106 and a retention time of >104 s is achieved by illumination with 405 nm light pulses as well as application of gate voltage pulses. However, upon illumination with 532 or 635 nm light pulses, multilevel optical memory effects are observed, which are dependent on the wavelength and the optical exposure dosage. In addition, compared to the device employing a graphene floating gate, the device with an MoS2 floating gate is more sensitive to light, suggesting that the multilevel optical memory properties originate from photoexcited carriers in the top floating gate and can be modulated by adjusting the top floating gate materials. The structure of the top floating gate may open up a new way to novel optoelectronic memory devices.

5.
ACS Appl Mater Interfaces ; 10(37): 31480-31487, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30105909

RESUMO

We fabricated MoS2-based flash memory devices by stacking MoS2 and hexagonal boron nitride (hBN) layers on an hBN/Au substrate and demonstrated that these devices can emulate various biological synaptic functions, including potentiation and depression processes, spike-rate-dependent plasticity, and spike-timing dependent plasticity. In particular, compared to a flash memory device prepared on an hBN substrate, the device fabricated on the hBN/Au exhibited considerably more symmetric and linear bidirectional gradual conductance change curves, which may be attributed to the device structure incorporating double floating gate. For the device on the hBN/Au, electron transfers may occur between the floating gate MoS2 and Au, as well as between the floating gate MoS2 and the channel MoS2, allowing for more control over electron tunneling and injection. To test our hypothesis, we also fabricated a MoS2-based flash memory device on an hBN/Pd substrate and found behavior similar to the device fabricated on hBN/Au. Our results demonstrate that flexible synaptic electronics may be implemented using MoS2-based flash memory devices with double floating gates.

6.
ACS Appl Mater Interfaces ; 8(14): 9224-30, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27042861

RESUMO

We investigated the memristive switching behavior in bismuth-antimony alloy (Bi(1-x)Sb(x)) single nanowire devices at 0.1 ≤ x ≤ 0.42. At 0.15 ≤ x ≤ 0.42, most Bi(1-x)Sb(x) single nanowire devices exhibited bipolar resistive switching (RS) behavior with on/off ratios of approximately 10(4) and narrow variations in switching parameters. Moreover, the resistance values in the low-resistance state (LRS) were insensitive to x. On the other hand, at 0.1 ≤ x ≤ 0.15, some Bi(1-x)Sb(x) single nanowire devices showed complementary RS-like behavior, which was ascribed to asymmetric contact properties. Transmission electron microscopy and elemental mapping images of Bi, Sb, and O obtained from the cross sections of the Bi(1-x)Sb(x) single nanowire devices, which were cut before and after RS, revealed that the mobile species was Sb ions, and the migration of the Sb ions to the nanowire surface brought the switch to LRS. In addition, we demonstrated that two types of synaptic plasticity, namely, short-term plasticity and long-term potentiation, could be implemented in Bi(1-x)Sb(x) nanowires by applying a sequence of voltage pulses with different repetition intervals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA