Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Addict Biol ; 20(2): 275-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24330252

RESUMO

Opioids represent effective drugs for the relief of pain, yet chronic opioid use often leads to a state of increased sensitivity to pain that is exacerbated during withdrawal. A sensitization of pain-related negative affect has been hypothesized to closely interact with addiction mechanisms. Neuro-adaptive changes occur as a consequence of excessive opioid exposure, including a recruitment of corticotropin-releasing factor (CRF) and norepinephrine (NE) brain stress systems. To better understand the mechanisms underlying the transition to dependence, we determined the effects of functional antagonism within these two systems on hyperalgesia-like behavior during heroin withdrawal utilizing models of both acute and chronic dependence. We found that passive or self-administered heroin produced a significant mechanical hypersensitivity. During acute opioid dependence, systemic administration of the CRF1 receptor antagonist MPZP (20 mg/kg) alleviated withdrawal-induced mechanical hypersensitivity. In contrast, several functional adrenergic system antagonists (clonidine, prazosin, propranolol) failed to alter mechanical hypersensitivity in this state. We then determined the effects of chronic MPZP or clonidine treatment on extended access heroin self-administration and found that MPZP, but not clonidine, attenuated escalation of heroin intake, whereas both drugs alleviated chronic dependence-associated hyperalgesia. These findings suggest that an early potentiation of CRF signaling occurs following opioid exposure that begins to drive both opioid-induced hyperalgesia and eventually intake escalation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Dependência de Heroína/metabolismo , Heroína/administração & dosagem , Hiperalgesia/metabolismo , Entorpecentes/administração & dosagem , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Clonidina/farmacologia , Prazosina/farmacologia , Propranolol/farmacologia , Ratos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Autoadministração
2.
J Neurosci ; 33(49): 19384-92, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305833

RESUMO

The abuse of opioid drugs, both illicit and prescription, is a persistent problem in the United States, accounting for >1.2 million users who require treatment each year. Current treatments rely on suppressing immediate withdrawal symptoms and replacing illicit drug use with long-acting opiate drugs. However, the mechanisms that lead to preventing opiate dependence are still poorly understood. We hypothesized that κ opioid receptor (KOR) activation during chronic opioid intake contributes to negative affective states associated with withdrawal and the motivation to take increasing amounts of heroin. Using a 12 h long-access model of heroin self-administration, rats showed escalation of heroin intake over several weeks. This was prevented by a single high dose (30 mg/kg) of the long-acting KOR antagonist norbinaltorphimine (nor-BNI), paralleled by reduced motivation to respond for heroin on a progressive-ratio schedule of reinforcement, a measure of compulsive-like responding. Systemic nor-BNI also significantly decreased heroin withdrawal-associated anxiety-like behavior. Immunohistochemical analysis showed prodynorphin content increased in the nucleus accumbens core in all heroin-exposed rats, but selectively increased in the nucleus accumbens shell in long-access rats. Local infusion of nor-BNI (4 µg/side) into accumbens core altered the initial intake of heroin but not the rate of escalation, while local injection into accumbens shell selectively suppressed increases in heroin intake over time without altering initial intake. These data suggest that dynorphin activity in the nucleus accumbens mediates the increasing motivation for heroin taking and compulsive-like responding for heroin, suggesting that KOR antagonists may be promising targets for the treatment of opioid addiction.


Assuntos
Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/psicologia , Motivação/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Animais , Ansiedade/psicologia , Cateterismo , Condicionamento Operante , Encefalinas/metabolismo , Imuno-Histoquímica , Masculino , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Precursores de Proteínas/metabolismo , Ratos , Ratos Wistar , Esquema de Reforço , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia
3.
Int J Neuropsychopharmacol ; 16(8): 1867-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590881

RESUMO

Anxiety is one of the early symptoms of opioid withdrawal and contributes to continued drug use and relapse. The acoustic startle response (ASR) is a component of anxiety that has been shown to increase during opioid withdrawal in both humans and animals. We investigated the role of corticotropin-releasing factor (CRF) and norepinephrine (NE), two key mediators of the brain stress system, on acute heroin withdrawal-potentiated ASR. Rats injected with heroin (2 mg/kg s.c.) displayed an increased ASR when tested 4 h after heroin treatment. A similar increase in ASR was found in rats 10-20 h into withdrawal from extended access (12 h) to i.v. heroin self-administration, a model that captures several aspects of heroin addiction in humans. Both the α 2 adrenergic receptor agonist clonidine (10 µg/kg s.c.) and CRF1 receptor antagonist N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP; 20 mg/kg s.c.) blocked heroin withdrawal-potentiated startle. To investigate the relationship between CRF1 and α 2 adrenergic receptors in the potentiation of the ASR, we tested the effect of MPZP on yohimbine (1.25 mg/kg s.c.)-potentiated startle and clonidine on CRF (2 µg i.c.v.)-potentiated startle. Clonidine blocked CRF-potentiated startle, whereas MPZP partially attenuated but did not reverse yohimbine-potentiated startle, suggesting that CRF may drive NE release to potentiate startle. These results suggest that CRF1 and α 2 receptors play an important role in the heightened anxiety-like behaviour observed during acute withdrawal from heroin, possibly via CRF inducing the release of NE in stress-related brain regions.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Heroína/efeitos adversos , Entorpecentes/efeitos adversos , Receptores Adrenérgicos alfa 2/metabolismo , Reflexo de Sobressalto/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Estimulação Acústica , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Análise de Variância , Animais , Clonidina/farmacologia , Condicionamento Operante/efeitos dos fármacos , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/farmacologia , Modelos Animais de Doenças , Masculino , Norepinefrina/metabolismo , Psicoacústica , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Autoadministração , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo , Ioimbina/farmacologia
4.
Neuropharmacology ; 76 Pt B: 370-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23747571

RESUMO

Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.


Assuntos
Comportamento Impulsivo/complicações , Reforço Psicológico , Transtornos Relacionados ao Uso de Substâncias/complicações , Tonsila do Cerebelo/metabolismo , Animais , Hormônio Liberador da Corticotropina/metabolismo , Comportamento de Procura de Droga , Dinorfinas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo
5.
Neuropsychopharmacology ; 38(6): 976-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23303056

RESUMO

Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects.


Assuntos
Comportamento Aditivo/prevenção & controle , Comportamento Aditivo/psicologia , Heroína/administração & dosagem , Piperidinas/uso terapêutico , Receptores da Neurocinina-1/metabolismo , Reforço Psicológico , Animais , Heroína/antagonistas & inibidores , Masculino , Motivação/efeitos dos fármacos , Motivação/fisiologia , Piperidinas/farmacologia , Ratos , Ratos Wistar , Receptores da Neurocinina-1/fisiologia , Autoadministração
6.
Neuropharmacology ; 62(2): 1142-51, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119954

RESUMO

Animal models of drug dependence have described both reductions in brain reward processes and potentiation of stress-like (or anti-reward) mechanisms, including a recruitment of corticotropin-releasing factor (CRF) signaling. Accordingly, chronic exposure to opiates often leads to the development of mechanical hypersensitivity. We measured paw withdrawal thresholds (PWTs) in male Wistar rats allowed limited (short access group: ShA) or extended (long access group: LgA) access to heroin or cocaine self-administration, or in rats made dependent on ethanol via ethanol vapor exposure (ethanol-dependent group). In heroin self-administering animals, after transition to LgA conditions, thresholds were reduced to around 50% of levels observed at baseline, and were also significantly lower than thresholds measured in animals remaining on the ShA schedule. In contrast, thresholds in animals self-administering cocaine under either ShA (1 h) or LgA (6 h) conditions were unaltered. Similar to heroin LgA rats, ethanol-dependent rats also developed mechanical hypersensitivity after eight weeks of ethanol vapor exposure compared to non-dependent animals. Systemic administration of the CRF1R antagonist MPZP significantly alleviated the hypersensitivity observed in rats dependent on heroin or ethanol. The emergence of mechanical hypersensitivity with heroin and ethanol dependence may thus represent one critical drug-associated negative emotional state driving dependence on these substances. These results also suggest a recruitment of CRF-regulated nociceptive pathways associated with escalation of intake and dependence. A greater understanding of relationships between chronic drug exposure and pain-related states may provide insight into mechanisms underlying the transition to drug addiction, as well as reveal new treatment opportunities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Assuntos
Alcoolismo/fisiopatologia , Dependência de Heroína/fisiopatologia , Hiperalgesia/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Heroína/administração & dosagem , Masculino , Percepção da Dor/efeitos dos fármacos , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Estimulação Física , Ratos , Ratos Wistar , Recompensa , Autoadministração
7.
Pharmacol Biochem Behav ; 93(2): 141-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19426754

RESUMO

Prepulse inhibition of startle (PPI) is an operational measure of sensorimotor gating that is impaired in schizophrenia. Treatment with mixed dopamine D2/D3 antagonists diminishes schizophrenia symptoms, and opposes dopamine agonist-induced PPI deficits in rats. There are reasons to believe that functional D3 receptor antagonists might offer more favorable therapeutic profiles compared to current antipsychotics. However, D3-related drug discovery is hampered by the absence of assays sensitive to D3-mediated (antipsychotic) properties in vivo. Here, we characterized two putative D3-active compounds - WC10 and WC44 - in a PPI-based screening assay, comparing the sensitivity of test compounds to oppose PPI deficits induced by the mixed D1/D2-like agonist apomorphine vs. the preferential D3 agonist pramipexole in rats. WC10, WC44 (0, 1, 3, 10 mg/kg, each), and the preferential D2 antagonist L741,626 (0, 1 mg/kg) were studied, in combination with apomorphine (0, 0.5 mg/kg), or pramipexole (0, 1 mg/kg). L741,626 prevented apomorphine-, but not pramipexole-induced PPI deficits. WC10, but not WC44, prevented apomorphine-induced PPI deficits; both compounds opposed pramipexole-induced PPI deficits, suggesting functional D3 and D1/D2 antagonist profiles for WC10, and functional D3 receptor antagonism for WC44. This assay may be valuable for detecting predominantly D3 vs. D2 receptor-linked mechanisms of action in vivo.


Assuntos
Antipsicóticos , Antagonistas de Dopamina/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos , Animais , Apomorfina/farmacologia , Benzotiazóis/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Indóis/farmacologia , Masculino , Piperidinas/farmacologia , Pramipexol , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA