Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(20): 37085-37100, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258626

RESUMO

Color balance is a critical concept in the application of functional transparent polymers from a customer's standpoint. In this study, multiple polar and non-polar fluorescent dyes are embedded simultaneously for the first time in a polydimethylsiloxane (PDMS) polymer matrix. Five dyes successfully coexist with the optimum blending ratio. Furthermore, simultaneous dispersing of polar and non-polar dyes in the polymer is achieved. Absorption and photoluminescence characteristics of multiple fluorescent dyes in PDMS medium are systemically deconvoluted and discussed. The competitive average visible transmittance and color balance of synthesized multi-fluorescent dye embedded PDMS is demonstrated by high color rendering index and CIE color space coordinates close to the white point. Additionally, the luminescent solar concentrator device demonstrates improved power conversion efficiency and light utilization efficiency than the pure PDMS waveguide-based device. Moreover, the long-term storage stability is demonstrated successfully. The findings, therefore, demonstrate the applicability of multi-fluorescent dye embedded PDMS to advanced transparent devices.

2.
ACS Appl Mater Interfaces ; 15(44): 51050-51058, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874850

RESUMO

The cesium lead iodide (CsPbI3) perovskite solar cell possesses a wide band gap ranging from 1.65 to 1.75 eV, which is suitable for integration into a tandem structure along with a low-band-gap silicon solar cell. Moreover, CsPbI3 has received considerable attention as a potential solution for the prevalent issues of low thermal stability of organic-inorganic perovskite solar cells and phase segregation encountered in conventional mixed halide wide-band-gap perovskite solar cells. Through the implementation of volatile additives, CsPbI3 has demonstrated substantial advancements in efficiency, process temperature, and stability. This study introduces a novel approach for barium (Ba)-doping by spraying an antisolvent containing barium bis(trifluoromethanesulfonimide) during the spin-coating process. By incorporating Ba2+ through this spraying technique, the formation of the delta phase in CsPbI3 is significantly suppressed; thereby, a power conversion efficiency of 18.56% is achieved, and a remarkable 93% of the initial efficiency is maintained after 600 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA