RESUMO
Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.
Assuntos
Epistasia Genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Domesticação , Inflorescência/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Alinhamento de SequênciaRESUMO
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , FemininoRESUMO
The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.
Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismoRESUMO
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Assuntos
Ftalazinas , Piperazinas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Linhagem Celular Tumoral , Ubiquitinação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo de DNA por Recombinação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Células HEK293 , Ligação Proteica , Cromatina/metabolismo , Quebras de DNA de Cadeia DuplaRESUMO
The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.
Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/genética , NF-kappa B/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/metabolismo , Epigênese Genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/fisiologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismoRESUMO
Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Mutação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Fenótipo , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
BACKGROUND: Although meningioma is the most common primary brain tumor, treatments rely on surgery and radiotherapy, and recurrent meningiomas have no standard therapeutic options due to a lack of clinically relevant research models. Current meningioma cell lines or organoids cannot reflect biological features of patient tumors since they undergo transformation along culture and consist of only tumor cells without microenvironment. We aim to establish patient-derived meningioma organoids (MNOs) preserving diverse cell types representative of the tumor microenvironment. METHODS: The biological features of MNOs were evaluated using WST, LDH, and collagen-based 3D invasion assays. Cellular identities in MNOs were confirmed by immunohistochemistry (IHC). Genetic alteration profiles of MNOs and their corresponding parental tumors were obtained by whole-exome sequencing. RESULTS: MNOs were established from four patients with meningioma (two grade 1 and two grade 2) at a 100% succession rate. Exclusion of enzymatic dissociation-reaggregation steps endowed MNOs with original histology and tumor microenvironment. In addition, we used a liquid media culture system instead of embedding samples into Matrigel, resulting in an easy-to-handle, cost-efficient, and time-saving system. MNOs maintained their functionality and morphology after long-term culture (> 9 wk) and repeated cryopreserving-recovery cycles. The similarities between MNOs and their corresponding parental tumors were confirmed by both IHC and whole-exome sequencing. As a representative application, we utilized MNOs in drug screening, and mifepristone, an antagonist of progesterone receptor, showed prominent antitumor efficacy with respect to viability, invasiveness, and protein expression. CONCLUSION: Taken together, our MNO model overcame limitations of previous meningioma models and showed superior resemblance to parental tumors. Thus, our model could facilitate translational research identifying and selecting drugs for meningioma in the era of precision medicine.
RESUMO
Peptidoglycan recognition proteins (PGRPs) and Toll-like receptors (TLRs) are highly conserved pattern recognition receptors (PRRs). Earthworms possess genes encoding TLRs that specifically respond to Gram-positive bacteria. In addition, several PGRPs have been recently identified, which are predicted to exhibit amidase activity but lack receptor function. In lophotrochozoans, a membrane-bound PRR responsible for detecting Gram-negative bacteria remains unidentified. This study reveals several novel transmembrane peptidoglycan recognition proteins (Ean-PGRPLs) in earthworms, whose mRNA expression increases in response to Gram-negative but not Gram-positive bacteria. This indicates that Ean-PGRPLs may serve as a PRR associated with intracellular signaling for Gram-negative bacteria.
Assuntos
Proteínas de Transporte , Oligoquetos , Animais , Oligoquetos/microbiologia , Oligoquetos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Bactérias Gram-Negativas , Bactérias Gram-PositivasRESUMO
Plants sense and integrate diverse stimuli to determine the timing for germination. A smoke compound, 3,4,5-trimethylfuran-2(5H)-one (trimethylbutenolide, TMB), has been identified to inhibit the seed germination of higher plants. To understand the mode of action, we examined various physiological and molecular aspects of the TMB-dependent inhibition of seed germination in Arabidopsis thaliana The results indicated that the effect of TMB is due to the enhanced physiological dormancy, which is modulated by other dormancy regulatory cues such as after-ripening, stratification, and ABA/GA signaling. In addition, gene expression profiling showed that TMB caused genome-wide transcriptional changes, altering the expression of a series of dormancy-related genes. Based on the TMB-responsive physiological contexts in Arabidopsis, we performed mutant screening to isolate genetic components that underpin the TMB-induced seed dormancy. As a result, the TMB-RESISTANT1 (TES1) gene in Arabidopsis, encoding a B2 group Raf-like kinase, was identified. Phenotypic analysis of the tes1 mutant implicated that TES1 has a critical role in the TMB-responsive gene expression and the inhibition of seed germination. Taken together, we propose that plants have been equipped with a TMB sensory pathway through which the TMB induces the seed dormancy in a TES1-dependent way.
Assuntos
Furanos/farmacologia , Dormência de Plantas , Sementes/metabolismo , Arabidopsis , Resistência a Medicamentos , Germinação , Sementes/efeitos dos fármacos , FumaçaRESUMO
Accurate 6DoF (degrees of freedom) pose and focal length estimation are important in extended reality (XR) applications, enabling precise object alignment and projection scaling, thereby enhancing user experiences. This study focuses on improving 6DoF pose estimation using single RGB images of unknown camera metadata. Estimating the 6DoF pose and focal length from an uncontrolled RGB image, obtained from the internet, is challenging because it often lacks crucial metadata. Existing methods such as FocalPose and Focalpose++ have made progress in this domain but still face challenges due to the projection scale ambiguity between the translation of an object along the z-axis (tz) and the camera's focal length. To overcome this, we propose a two-stage strategy that decouples the projection scaling ambiguity in the estimation of z-axis translation and focal length. In the first stage, tz is set arbitrarily, and we predict all the other pose parameters and focal length relative to the fixed tz. In the second stage, we predict the true value of tz while scaling the focal length based on the tz update. The proposed two-stage method reduces projection scale ambiguity in RGB images and improves pose estimation accuracy. The iterative update rules constrained to the first stage and tailored loss functions including Huber loss in the second stage enhance the accuracy in both 6DoF pose and focal length estimation. Experimental results using benchmark datasets show significant improvements in terms of median rotation and translation errors, as well as better projection accuracy compared to the existing state-of-the-art methods. In an evaluation across the Pix3D datasets (chair, sofa, table, and bed), the proposed two-stage method improves projection accuracy by approximately 7.19%. Additionally, the incorporation of Huber loss resulted in a significant reduction in translation and focal length errors by 20.27% and 6.65%, respectively, in comparison to the Focalpose++ method.
RESUMO
This study introduces a fault diagnosis algorithm based on particle filtering for open-cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method for the startup process, accounting for more than 30% of engine failures. Similar to the previous fault detection and diagnosis (FDD) algorithm for the startup process, the algorithm in this study is composed of a nonlinear filter to generate residuals, a residual analysis, and a multiple-model (MM) approach to detect and diagnose faults from the residuals. In contrast to the previous study, this study makes use of the modified cumulative sum (CUSUM) algorithm, widely used in change-detection monitoring, and a particle filter (PF), which is theoretically the most accurate nonlinear filter. The algorithm is confirmed numerically using the CUSUM and MM methods. Subsequently, the FDD algorithm is compared with an algorithm from a previous study using a Monte Carlo simulation. Through a comparative analysis of algorithmic performance, this study demonstrates that the current PF-based FDD algorithm outperforms the algorithm based on other nonlinear filters.
RESUMO
The operational efficacy of lane departure warning systems (LDWS) in autonomous vehicles is critically influenced by the retro-reflectivity of road markings, which varies with environmental wear and weather conditions. This study investigated how changes in road marking retro-reflectivity, due to factors such as weather and physical wear, impact the performance of LDWS. The study was conducted at the Yeoncheon SOC Demonstration Research Center, where various weather scenarios, including rainfall and transitions between day and night lighting, were simulated. We applied controlled wear to white, yellow, and blue road markings and measured their retro-reflectivity at multiple stages of degradation. Our methods included rigorous testing of the LDWS's recognition rates under these diverse environmental conditions. Our results showed that higher retro-reflectivity levels significantly improve the detection capability of LDWS, particularly in adverse weather conditions. Additionally, the study led to the development of a simulation framework for analyzing the cost-effectiveness of road marking maintenance strategies. This framework aims to align maintenance costs with the safety requirements of autonomous vehicles. The findings highlight the need for revising current road marking guidelines to accommodate the advanced sensor-based needs of autonomous driving systems. By enhancing retro-reflectivity standards, the study suggests a path towards optimizing road safety in the age of autonomous vehicles.
RESUMO
Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP-TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity.
Assuntos
Regulação da Expressão Gênica de Plantas/genética , Inflorescência/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Domínio BTB-POZ , Inflorescência/química , Solanum lycopersicum/fisiologia , MutaçãoRESUMO
Mutations within the SCN5A gene, which encodes the α-subunit 5 (NaV1.5) of the voltage-gated Na+ channel, have been linked to three distinct cardiac arrhythmia disorders: long QT syndrome type 3, Brugada syndrome (BrS), and cardiac conduction disorder. In this study, we have identified novel missense mutations (p.A385T/R504T) within SCN5A in a patient exhibiting overlap arrhythmia phenotypes. This study aims to elucidate the functional consequences of SCN5A mutants (p.A385T/R504T) to understand the clinical phenotypes. Whole-cell patch-clamp technique was used to analyze the NaV1.5 current (INa) in HEK293 cells transfected with the wild-type and mutant SCN5A with or without SCN1B co-expression. The amplitude of INa was not altered in mutant SCN5A (p.A385T/R504T) alone. Furthermore, a rightward shift of the voltage-dependent inactivation and faster recovery from inactivation was observed, suggesting a gain-of-function state. Intriguingly, the coexpression of SCN1B with p.A385T/R504T revealed significant reduction of INa and slower recovery from inactivation, consistent with the loss-of-function in Na+ channels. The SCN1B dependent reduction of INa was also observed in a single mutation p.R504T, but p.A385T co-expressed with SCN1B showed no reduction. In contrast, the slower recovery from inactivation with SCN1B was observed in A385T while not in R504T. The expression of SCN1B is indispensable for the electrophysiological phenotype of BrS with the novel double mutations; p.A385T and p.R504T contributed to the slower recovery from inactivation and reduced current density of NaV1.5, respectively.
RESUMO
Ramachandran plots, which describe protein structures by plotting the dihedral angle pairs of the backbone on a two-dimensional plane, have played an important role in structural biology over the past few decades. However, despite continued discovery of new protein structures to date, the Ramachandran plot is still constructed by only a small number of data points, and further it cannot reflect the steric information of proteins. Here, we investigated the secondary structure of proteins in terms of static and dynamic characteristics. As for static feature, the Ramachandran plot was revisited for the dataset consisting of 9,148 non-redundant high-resolution protein structures released in the protein data bank until April 1, 2022. By calculating amino acid propensities, it was found that the proportion of secondary structures with respect to residue depth is directly related to their hydrophobicity. As for dynamic feature, normal mode analysis (NMA) based on an elastic network model (ENM) was carried out for the dataset using our KOSMOS web server (http://bioengineering.skku.ac.kr/kosmos/). All ENM-based NMA results were stored in the KOSMOS database, allowing researchers to use them in various ways. In this process, it was commonly found that high B-factors appeared at the edge of the alpha helix region, which was elucidated by introducing residue depth. In addition, by investigating the change in dihedral angle, it was possible to quantitatively survey the contribution of structural change of protein on the Ramachandran plot. In conclusion, our statistical analysis of protein characteristics will provide insight into a range of protein structural studies.
Assuntos
Aminoácidos , Proteínas , Proteínas/química , Aminoácidos/química , Estrutura Secundária de Proteína , Conformação Proteica , Bases de Dados de ProteínasRESUMO
Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.
Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de GenesRESUMO
Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.
Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Miosinas/genética , Miosinas/metabolismo , Oryza/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismoRESUMO
A 77-year-old woman underwent F-18 FDG PET/CT for evaluation of fever focus. Diffuse and intense hepatosplenic uptake was noted and lymphoma or tuberculosis was proposed. Liver biopsy revealed chronic granulomatous inflammation with Langerhans-type giant cells and necrosis. A follow-up PET/CT after anti-tuberculosis treatment revealed that the hepatosplenic uptake had resolved.
Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Humanos , Idoso , Tomografia por Emissão de Pósitrons , Inflamação/diagnóstico , Tomografia Computadorizada por Raios X , Compostos RadiofarmacêuticosRESUMO
Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.
Assuntos
Robótica , Materiais Inteligentes , Poliuretanos/química , Raios UltravioletaRESUMO
Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.