Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 17(3): e2000451, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33984183

RESUMO

BACKGROUND: The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE: C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS: In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.


Assuntos
Álcoois , Engenharia Metabólica , Álcoois/química , Biocombustíveis , Biotecnologia , Fermentação
2.
Biotechnol J ; 15(6): e1900489, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162832

RESUMO

Advances in scientific technology in the early twentieth century have facilitated the development of synthetic plastics that are lightweight, rigid, and can be easily molded into a desirable shape without changing their material properties. Thus, plastics become ubiquitous and indispensable materials that are used in various manufacturing sectors, including clothing, automotive, medical, and electronic industries. However, strong physical durability and chemical stability of synthetic plastics, most of which are produced from fossil fuels, hinder their complete degradation when they are improperly discarded after use. In addition, accumulated plastic wastes without degradation have caused severe environmental problems, such as microplastics pollution and plastic islands. Thus, the usage and production of plastics is not free from environmental pollution or resource depletion. In order to lessen the impact of climate change and reduce plastic pollution, it is necessary to understand and address the current plastic life cycles. In this review, "sustainable biopolymers" are suggested as a promising solution to the current plastic crisis. The desired properties of sustainable biopolymers and bio-based and bio/chemical hybrid technologies for the development of sustainable biopolymers are mainly discussed.


Assuntos
Biopolímeros/química , Plásticos/química , Biodegradação Ambiental , Conservação dos Recursos Naturais , Poluição Ambiental , Combustíveis Fósseis , Reciclagem
3.
Int J Biol Macromol ; 149: 593-599, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001289

RESUMO

Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens ß-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.


Assuntos
Escherichia coli/genética , Engenharia Metabólica , Poli-Hidroxialcanoatos/biossíntese , Sacarose/metabolismo , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Pasteurellaceae/enzimologia , Pasteurellaceae/genética , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/genética , Sacarose/química , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
4.
Arch Environ Occup Health ; 67(2): 78-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22524647

RESUMO

This study aimed to determine whether occupational exposure to pesticides was associated with decreased nerve conduction studies among farmers. On 2 separate occasions, the authors performed a cross-sectional study of a group of 31 male farmers who periodically applied pesticides. The study included questionnaire interviews and nerve conduction studies on the median, ulnar, posterior tibial, peroneal, and sural nerves. Although all mean values remained within laboratory normal limits, significant differences between the first and second tests were found in sensory conduction velocities on the median and sural nerves, and motor conduction velocities on the posterior tibial nerve. Lifetime days of pesticide application was negatively associated with nerve conduction velocities at most nerves after adjusting for potential confounders. These findings may reflect a link between occupational pesticide exposure and peripheral neurophysiologic abnormality that deserves further evaluation.


Assuntos
Agricultura , Condução Nervosa/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Praguicidas/efeitos adversos , Adulto , Idoso , Povo Asiático , Estudos Transversais , Humanos , Masculino , Nervo Mediano/efeitos dos fármacos , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Nervo Fibular/efeitos dos fármacos , República da Coreia/epidemiologia , Nervo Sural/efeitos dos fármacos , Nervo Tibial/efeitos dos fármacos , Nervo Ulnar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA