Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 18(15): 15303-10, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20720907

RESUMO

We demonstrate a monolithic integration of variable optical attenuators (VOAs) and photodetectors (PDs) based on submicrometer silicon (Si) rib waveguide with p-i-n diode structure for near infrared (NIR) light. To make the Si PD absorptive for NIR, we introduced lattice defects at the rib core by means of argon ion implantation. At reverse bias of 5 V, the PD exhibits dark current of approximately 1 nA, responsivity of approximately 65 mA/W at 1560-nm wavelength, and a 3-dB cut-off frequency of approximately 350 MHz, while the VOA shows approximately 100 MHz. The PD has an absorption coefficient as low as approximately 0.5 cm(-1), which is favorable for an in in-line PD configuration, where the PD absorbs a small portion of the optical power. For DC light, the PD precisely detects the optical power attenuated by the VOA with a detection range of over 40 dB. The 3-dB cut-off frequency of synchronous operation between the VOA and PD is approximately 50 MHz, which is limited by RF noise originating from the VOA drive current. Putting an isolation groove between the VOA and PD is effective for avoiding performance degradation in DC and RF operation.

2.
Opt Express ; 18(8): 8412-21, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588687

RESUMO

We demonstrate the monolithic integration of germanium (Ge) p-i-n photodetector (PDs) with silicon (Si) variable optical attenuator (VOAs) based on submicrometer Si rib waveguide. A PD is connected to a VOA along the waveguide via a tap coupler. The PDs exhibit low dark current of ~60 nA and large responsivity of ~0.8 A/W at the reverse bias of 1 V at room temperature. These characteristics are uniform over the chip scale. The PDs generate photocurrents precisely with respect to DC optical power attenuated by the VOAs. Two devices work synchronously for modulated optical signals as well. 3-dB cut-off frequency of the VOA is ~100 MHz, while that of the PD is ~1 GHz. The synchronous response speed is limited by the VOA response speed. This is the first demonstration, to the best of our knowledge, of monolithic integration of Ge PDs with high-carrier-injection-based optical modulation devices based on Si.

3.
Opt Express ; 18(11): 11282-91, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20588989

RESUMO

We investigated influence of carrier lifetime on performance of silicon (Si) p-i-n variable optical attenuators (VOAs) on submicrometer Si rib waveguides. VOAs were fabricated with and without intentional implantation of lattice defects into their intrinsic region. Carrier lifetime was measured by pulse responses for normal incidence of picosecond laser pulse of 775 nm to the VOA, as approximately 1 ns and approximately 7 ns for the VOAs with and without defects, respectively. Carrier lifetime is determined by the sum of surface recombination and Auger recombination for VOAs without defects, while Schockley-Read-Hall recombination is dominant for the VOA with defects. As a result, attenuation efficiency (dB/mA) is 0.2-0.7 and 0.04-0.1, while 3-dB bandwidth is 40-100 MHz and over 200 MHz for the VOAs with and without defects, respectively. There is a trade-off relation between attenuation and response speed of the VOAs with respect to carrier lifetime i.e., attenuation efficiency is linearly proportional to the carrier lifetime, whereas response speed is inversely proportional to it.


Assuntos
Refratometria/instrumentação , Semicondutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Opt Express ; 17(18): 16358-65, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19724635

RESUMO

We propose a new class of optoelectronic devices in which the optical properties of the active material is enhanced by strain generated from micromechanical structures. As a concrete example, we modeled the emission efficiency of strained germanium supported by a cantilever-like platform. Our simulations indicate that net optical gain is obtainable even in indirect germanium under a substrate biaxial tensile strain of about 1.75% with an electron-hole injection concentration of 9 x 10(18) cm(-3) while direct bandgap germanium becomes available at a strain of 2%. A large wavelength tuning span of 300 nm in the mid-IR range also opens up the possibility of a tunable on-chip germanium biomedical light source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA