Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Chem Biol ; 20(1): 120-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062262

RESUMO

Macrocyclic peptides represent promising scaffolds for chemical tools and potential therapeutics. Synthetic methods for peptide macrocyclization are often hampered by C-terminal epimerization and oligomerization, leading to difficult scalability. While chemical strategies to circumvent this issue exist, they often require specific amino acids to be present in the peptide sequence. Herein, we report the characterization of Ulm16, a peptide cyclase belonging to the penicillin-binding protein-type class of thioesterases that catalyze head-to-tail macrolactamization of nonribosmal peptides. Ulm16 efficiently cyclizes various nonnative peptides ranging from 4 to 6 amino acids with catalytic efficiencies of up to 3 × 106 M-1 s-1. Unlike many previously described homologs, Ulm16 tolerates a variety of C- and N-terminal amino acids. The crystal structure of Ulm16, along with modeling of its substrates and site-directed mutagenesis, allows for rationalization of this wide substrate scope. Overall, Ulm16 represents a promising tool for the biocatalytic production of macrocyclic peptides.


Assuntos
Aminoácidos , Peptídeos , Proteínas de Ligação às Penicilinas/metabolismo , Ciclização , Peptídeos/química , Biocatálise , Aminoácidos/metabolismo , Peptídeos Cíclicos
2.
Chembiochem ; 25(3): e202300671, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055197

RESUMO

The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Proteólise , Proteínas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38632045

RESUMO

Narrow-spectrum antibiotics are of great interest given their ability to spare the microbiome and decrease widespread antibiotic resistance compared to broad-spectrum antibiotics. Herein, we screened an in-house library of Actinobacteria strains for selective activity against Acinetobacter baumannii and successfully identified Streptomyces sp. CS-62 as a producer of a natural product with this valuable activity. Analysis of the cultures via high-resolution mass spectrometry and tandem mass spectrometry, followed by comparison with molecules in the Natural Product Atlas and the Global Natural Products Social Molecular Networking platform, suggested a novel natural product. Genome mining analysis initially supported the production of a novel kirromycin derivative. Isolation and structure elucidation via mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses revealed that the active natural product was the known natural product factumycin, exposing omissions and errors in the consulted databases. While public databases are generally very useful for avoiding rediscovery of known molecules, rediscovery remains a problem due to public databases either being incomplete or having errors that result in failed dereplication. Overall, the work describes the ongoing problem of dereplication and the continued need for public database curation.


Assuntos
Acinetobacter baumannii , Antibacterianos , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Produtos Biológicos/metabolismo , Testes de Sensibilidade Microbiana
4.
Beilstein J Org Chem ; 20: 1001-1010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711585

RESUMO

Natural products (NPs) are fantastic sources of inspiration for novel pharmaceuticals, oftentimes showing unique bioactivity against interesting targets. Specifically, NPs containing furan moieties show activity against a variety of diseases including fungal infections, and cancers. However, it is challenging to discover and isolate these small molecules from cell supernatant. The work described herein showcases the development of a molecular probe that can covalently modify furan moieties via a [4 + 2] Diels-Alder cycloaddition, making them easily identifiable on liquid chromatography-mass spectrometry (LC-MS). The molecular probe, which undergoes this reaction with a variety of furans, was designed with both a UV-tag and a mass tag to enable easy identification. The probe has been tested with a variety of purified furans, including natural products, methylenomycin furan (MMF) hormones, and MMF derivatives. Moreover, the molecular probe has been tested in crude supernatants of various Streptomyces strains and enables identification of MMFs.

5.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587009

RESUMO

Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. ONE-SENTENCE SUMMARY: This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.


Assuntos
Actinobacteria , Produtos Biológicos , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/metabolismo , Bactérias/metabolismo , Antibacterianos/metabolismo , Família Multigênica
6.
Nat Chem Biol ; 16(1): 60-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768033

RESUMO

Genome mining has become a key technology to exploit natural product diversity. Although initially performed on a single-genome basis, the process is now being scaled up to mine entire genera, strain collections and microbiomes. However, no bioinformatic framework is currently available for effectively analyzing datasets of this size and complexity. In the present study, a streamlined computational workflow is provided, consisting of two new software tools: the 'biosynthetic gene similarity clustering and prospecting engine' (BiG-SCAPE), which facilitates fast and interactive sequence similarity network analysis of biosynthetic gene clusters and gene cluster families; and the 'core analysis of syntenic orthologues to prioritize natural product gene clusters' (CORASON), which elucidates phylogenetic relationships within and across these families. BiG-SCAPE is validated by correlating its output to metabolomic data across 363 actinobacterial strains and the discovery potential of CORASON is demonstrated by comprehensively mapping biosynthetic diversity across a range of detoxin/rimosamide-related gene cluster families, culminating in the characterization of seven detoxin analogues.


Assuntos
Actinobacteria/genética , Vias Biossintéticas/genética , Biologia Computacional/métodos , Genoma Bacteriano , Algoritmos , Produtos Biológicos , Análise por Conglomerados , Mineração de Dados/métodos , Genômica , Metabolômica , Microbiota , Família Multigênica , Filogenia , Reprodutibilidade dos Testes , Software
7.
Angew Chem Int Ed Engl ; 61(30): e202206173, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35588368

RESUMO

The biosynthesis of the natural product dehydrofosmidomycin involves an unusual transformation in which 2-(trimethylamino)ethylphosphonate is rearranged, desaturated and demethylated by the enzyme DfmD, a divergent member of the 2-oxoglutarate-dependent dioxygenase superfamily. Although other members of this enzyme family catalyze superficially similar transformations, the combination of all three reactions in a single enzyme has not previously been observed. By characterizing the products of in vitro reactions with labeled and unlabeled substrates, we show that DfmD performs this transformation in two steps, with the first involving desaturation of the substrate to form 2-(trimethylamino)vinylphosphonate, and the second involving rearrangement and demethylation to form methyldehydrofosmidomycin. These data reveal significant differences from the desaturation and rearrangement reactions catalyzed by other family members.


Assuntos
Dioxigenases , Ácidos Cetoglutáricos , Catálise , Dioxigenases/metabolismo , Oxirredução , Estresse Oxidativo
8.
Nat Chem Biol ; 15(11): 1049-1056, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451762

RESUMO

Fosmidomycin and related molecules comprise a family of phosphonate natural products with potent antibacterial, antimalarial and herbicidal activities. To understand the biosynthesis of these compounds, we characterized the fosmidomycin producer, Streptomyces lavendulae, using biochemical and genetic approaches. We were unable to elicit production of fosmidomycin, instead observing the unsaturated derivative dehydrofosmidomycin, which we showed potently inhibits 1-deoxy-D-xylulose-5-phosphate reductoisomerase and has bioactivity against a number of bacteria. The genes required for dehydrofosmidomycin biosynthesis were established by heterologous expression experiments. Bioinformatics analyses, characterization of intermediates and in vitro biochemistry show that the biosynthetic pathway involves conversion of a two-carbon phosphonate precursor into the unsaturated three-carbon product via a highly unusual rearrangement reaction, catalyzed by the 2-oxoglutarate dependent dioxygenase DfmD. The required genes and biosynthetic pathway for dehydrofosmidomycin differ substantially from that of the related natural product FR-900098, suggesting that the ability to produce these bioactive molecules arose via convergent evolution.


Assuntos
Produtos Biológicos/metabolismo , Fosfomicina/análogos & derivados , Organofosfonatos/metabolismo , Fosfomicina/biossíntese , Genes Bacterianos , Família Multigênica , Streptomyces/genética
9.
Invest New Drugs ; 35(2): 134-144, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27975234

RESUMO

Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.


Assuntos
Antineoplásicos , Quinonas , 8-Hidroxi-2'-Desoxiguanosina , Células A549 , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/metabolismo , Gatos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Feminino , Células HEK293 , Humanos , Neoplasias Bucais/sangue , Neoplasias Bucais/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinonas/efeitos adversos , Quinonas/farmacocinética , Quinonas/farmacologia
10.
Acc Chem Res ; 48(10): 2715-23, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26444384

RESUMO

One of the major goals of cancer therapy is the selective targeting of cancer cells over normal cells. Unfortunately, even with recent advances, the majority of chemotherapeutics still indiscriminately kill all rapidly dividing cells. Although these drugs are effective in certain settings, their inability to specifically target cancer results in significant dose-limiting toxicities. One way to avoid such toxicities is to target an aspect of the cancer cell that is not shared by normal cells. A potential cancer-specific target is the enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). NQO1 is a 2-electron reductase responsible for the detoxification of quinones. Its expression is typically quite low in normal tissue, but it has been found to be greatly overexpressed in many types of solid tumors, including lung, breast, pancreatic, and colon cancers. This overexpression is thought to be in response to the higher oxidative stress of the cancer cell, and it is possible that NQO1 contributes to tumor progression. The overexpression of NQO1 and its correlation with poor patient outcome make it an intriguing target. Although some have explored inhibiting NQO1 as an anticancer strategy, this has generally been unsuccessful. A more promising strategy is to utilize NQO1 substrates that are activated upon reduction by NQO1. For example, in principle, reduction of a quinone can result in a hydroquinone that is a DNA alkylator, protein inhibitor, or reduction-oxidation cycler. Although there are many proposed NQO1 substrates, head-to-head assays reveal only two classes of compounds that convincingly induce cancer cell death through NQO1-mediated activation. In this Account, we describe the discovery and development of one of these compounds, the natural product deoxynyboquinone (DNQ), an excellent NQO1 substrate and anticancer agent. A modular synthesis of DNQ was developed that enabled access to the large compound quantities needed to conduct extensive mechanistic evaluations and animal experiments. During these evaluations, we found that DNQ is an outstanding NQO1 substrate that is processed much more efficiently than other putative NQO1 substrates. Importantly, its anticancer activity is strictly dependent on the overexpression of active NQO1. Using previous crystal structures of NQO1, novel DNQ derivatives were designed that are also excellent NQO1 substrates and possess properties that make them more attractive than the parent natural product for translational development. Given their selectivity, potency, outstanding pharmacokinetic properties, and the ready availability of diagnostics to assess NQO1 in patients, DNQ and its derivatives have considerable potential as personalized medicines for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinonas/farmacologia , Antineoplásicos/metabolismo , Naftoquinonas/farmacologia , Quinonas/síntese química , Quinonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Res Sq ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978602

RESUMO

Conducting polymers are of great interest in bioimaging, bio-interfaces, and bioelectronics for their biocompatibility and the unique combination of optical, electrical, and mechanical properties. They are typically prepared outside through traditional organic synthesis and delivered into the biological systems. The ability to call for the polymerization ingredients available inside the living systems to generate conducting polymers in vivo will offer new venues in future biomedical applications. This study is the first report of in vivo synthesis of an n-doped conducting polymer (n-PBDF) within live zebrafish embryos, achieved through whole blood catalyzed polymerization of 3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione (BDF). Prior to this, the efficacy of such a polymerization was rigorously established through a sequence of in vitro experiments involving Hemin, Hemoproteins (Hemoglobin, Myoglobin, and Cytochrome C), red blood cells, and the whole blood. Ultimately, in cellulo formed n-PBDF within cultured primary neurons demonstrated enhanced bio-interfaces and led to more effective light-induced neural activation than the prefabricated polymer. This underscores the potential advantages of synthesizing conducting polymers directly in living systems for biomedical applications.

12.
Mol Cancer Res ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771248

RESUMO

Angiosarcoma is a vascular sarcoma that is highly aggressive and metastatic. Due to its rarity, treatment options for patients are limited, therefore more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives angiosarcoma development in mice. Given the role of DICER1 in canonical microRNA (miRNA) biogenesis, this suggests that miRNA loss is important in angiosarcoma development. After testing miRNAs previously suggested to have a tumor-suppressive role in angiosarcoma, microRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an angiosarcoma cell line, expression data from angiosarcoma patients, and target prediction algorithms. We validated miR-497 direct regulation of CCND2, CDK6, and VAT1. One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product Neocarzilin A reduces angiosarcoma migration. Implications: This work supports the potent tumor-suppressive abilities of miR-497 in angiosarcoma, providing evidence for its potential as a therapeutic, and provides insight into the mechanisms of tumor suppression through analysis of the target gene regulatory network of miR-497.

13.
J Am Chem Soc ; 135(35): 12984-6, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23972114

RESUMO

Actinophyllic acid is a biologically active indole alkaloid with a unique structural framework that incorporates five contiguous stereocenters. A total synthesis of (±)-actinophyllic acid has been completed that proceeds in only 10 steps from readily available, known compounds and with the isolation of nine intermediates. The synthesis features a novel cascade of reactions of N-stabilized carbocations with π-nucleophiles to create the tetracyclic core of actinophyllic acid in a single chemical operation. This pivotal cascade sequence generates substructures of the actinophyllic acid core that are not otherwise accessible, and one key intermediate was modified to furnish several novel compounds having potentially promising anticancer activity, one of which induces cell death in a wide range of cancer cell lines.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/farmacologia , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/química , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
14.
ACS Chem Biol ; 18(7): 1624-1631, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338162

RESUMO

Bacteria produce natural products (NPs) via biosynthetic gene clusters. Unfortunately, many biosynthetic gene clusters are silent under traditional laboratory conditions. To access novel NPs, a better understanding of their regulation is needed. γ-Butyrolactones, including the A-factor and Streptomyces coelicolor butanolides, SCBs, are a major class of Streptomyces' hormones. Study of these hormones has been limited due to challenges in accessing them in stereochemically pure forms. Herein, we describe an efficient route to (R)-paraconyl alcohol, a key intermediate for these molecules, as well as a biocatalytic method to access the exocyclic hydroxyl group that differentiates A-factor-type from SCB-type hormones. Utilizing these methods, a library of hormones have been synthesized and tested in a green fluorescent protein reporter assay for their ability to relieve repression by the repressor ScbR. This allowed the most quantitative structure-activity relationship of γ-butyrolactones and a cognate repressor to date. Bioinformatics analysis strongly suggests that many other repressors of NP biosynthesis likely bind similar molecules. This efficient, diversifiable synthesis will enable further investigation of the regulation of NP biosynthesis.


Assuntos
Streptomyces coelicolor , Streptomyces , 4-Butirolactona/química , Streptomyces/metabolismo , Streptomyces coelicolor/genética , Hormônios/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
15.
J Med Chem ; 66(9): 6184-6192, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37097833

RESUMO

Nuclear factor erythroid-related 2-factor 2 (Nrf2) is a transcription factor traditionally thought of as a cellular protector. However, in many cancers, Nrf2 is constitutively activated and correlated with therapeutic resistance. Nrf2 heterodimerizes with small musculoaponeurotic fibrosarcoma Maf (sMAF) transcription factors, allowing binding to the antioxidant responsive element (ARE) and induction of transcription of Nrf2 target genes. While transcription factors are historically challenging to target, stapled peptides have shown great promise for inhibiting these protein-protein interactions. Herein, we describe the first direct cell-permeable inhibitor of Nrf2/sMAF heterodimerization. N1S is a stapled peptide designed based on AlphaFold predictions of the interactions between Nrf2 and sMAF MafG. A cell-based reporter assay combined with in vitro biophysical assays demonstrates that N1S directly inhibits Nrf2/MafG heterodimerization. N1S treatment decreases the transcription of Nrf2-dependent genes and sensitizes Nrf2-dependent cancer cells to cisplatin. Overall, N1S is a promising lead for the sensitization of Nrf2-addicted cancers.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Repressoras , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição MafG/genética , Fator de Transcrição MafG/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo
16.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808715

RESUMO

Angiosarcoma (AS) is a vascular sarcoma that is highly aggressive and metastatic. Due to its rarity, treatment options for patients are limited, therefore more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives AS development in mice. Given the role of DICER1 in canonical microRNA (miRNA) biogenesis, this suggests that miRNA loss is important in AS development. After testing miRNAs previously suggested to have a tumor-suppressive role in AS, microRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an AS cell line, expression data from AS patients, and target prediction algorithms. We validated miR-497 direct regulation of CCND2, CDK6, and VAT1. One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product Neocarzilin A reduces AS migration. This work provides insight into the mechanisms of miR-497 and its target genes in AS pathogenesis.

17.
Bioorg Med Chem ; 19(15): 4635-43, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21733699

RESUMO

Carboxylesterases (CE) are ubiquitous enzymes found in both human and animal tissues and are responsible for the metabolism of xenobiotics. This includes numerous natural products, as well as a many clinically used drugs. Hence, the activity of these agents is likely dependent upon the levels and location of CE expression. We have recently identified benzil is a potent inhibitor of mammalian CEs, and in this study, we have assessed the ability of analogues of this compound to inhibit these enzymes. Three different classes of molecules were assayed: one containing different atoms vicinal to the carbonyl carbon atom and the benzene ring [PhXC(O)C(O)XPh, where X=CH2, CHBr, N, S, or O]; a second containing a panel of alkyl 1,2-diones demonstrating increasing alkyl chain length; and a third consisting of a series of 1-phenyl-2-alkyl-1,2-diones. In general, with the former series of molecules, heteroatoms resulted in either loss of inhibitory potency (when X=N), or conversion of the compounds into substrates for the enzymes (when X=S or O). However, the inclusion of a brominated methylene atom resulted in potent CE inhibition. Subsequent analysis with the alkyl diones [RC(O)C(O)R, where R ranged from CH3 to C8H17] and 1-phenyl-2-alkyl-1,2-diones [PhC(O)C(O)R where R ranged from CH3 to C6H13], demonstrated that the potency of enzyme inhibition directly correlated with the hydrophobicity (clogP) of the molecules. We conclude from these studies that that the inhibitory power of these 1,2-dione derivatives depends primarily upon the hydrophobicity of the R group, but also on the electrophilicity of the carbonyl group.


Assuntos
Carboxilesterase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Animais , Carboxilesterase/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Etano/síntese química , Etano/química , Etano/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular
18.
ACS Chem Biol ; 16(11): 2604-2611, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34699170

RESUMO

Natural products are a bountiful source of bioactive molecules. Unfortunately, discovery of novel bioactive natural products is challenging due to cryptic biosynthetic gene clusters, low titers, and arduous purifications. Herein, we describe SNaPP (Synthetic Natural Product Inspired Cyclic Peptides), a method for identifying NP-inspired bioactive peptides. SNaPP expedites bioactive molecule discovery by combining bioinformatics predictions of nonribosomal peptide synthetases with chemical synthesis of the predicted natural products (pNPs). SNaPP utilizes a recently discovered cyclase, the penicillin binding protein-like cyclase, as the lynchpin for the development of a library of head-to-tail cyclic peptide pNPs. Analysis of 500 biosynthetic gene clusters allowed for identification of 131 novel pNPs. Fifty-one diverse pNPs were synthesized using solid phase peptide synthesis and solution-phase cyclization. Antibacterial testing revealed 14 pNPs with antibiotic activity, including activity against multidrug-resistant Gram-negative bacteria. Overall, SNaPP demonstrates the power of combining bioinformatics predictions with chemical synthesis to accelerate the discovery of bioactive molecules.


Assuntos
Produtos Biológicos/química , Peptídeos Cíclicos/química , Antibacterianos/química , Antibacterianos/farmacologia , Biologia Computacional , Ciclização , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica , Proteínas de Ligação às Penicilinas/química , Técnicas de Síntese em Fase Sólida
19.
Neoplasia ; 23(8): 811-822, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246985

RESUMO

Developing effective therapies for the treatment of advanced head-and-neck squamous cell carcinoma (HNSCC) remains a major challenge, and there is a limited landscape of effective targeted therapies on the horizon. NAD(P)H:quinone oxidoreductase 1 (NQO1) is a 2-electron reductase that is overexpressed in HNSCC and presents as a promising target for the treatment of HNSCC. Current NQO1-targeted drugs are hindered by their poor oxidative tolerability in human patients, underscoring a need for better preclinical screening for oxidative toxicities for NQO1-bioactivated small molecules. Herein, we describe our work to include felines and feline oral squamous cell carcinoma (FOSCC) patients in the preclinical assessment process to prioritize lead compounds with increased tolerability and efficacy prior to full human translation. Specifically, our data demonstrate that IB-DNQ, an NQO1-targeted small molecule, is well-tolerated in FOSCC patients and shows promising initial efficacy against FOSCC tumors in proof-of-concept single agent and radiotherapy combination cohorts. Furthermore, FOSCC tumors are amenable to evaluating a variety of target-inducible couplet hypotheses, evidenced herein with modulation of NQO1 levels with palliative radiotherapy. The use of felines and their naturally-occurring tumors provide an intriguing, often underutilized tool for preclinical drug development for NQO1-targeted approaches and has broader applications for the evaluation of other anticancer strategies.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Terapia de Alvo Molecular , Neoplasias Bucais/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Gatos , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/etiologia , Mutação , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Polimorfismo de Nucleotídeo Único , Tomografia Computadorizada por Raios X , Resultado do Tratamento
20.
ACS Chem Biol ; 13(4): 1029-1037, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29510029

RESUMO

Natural products (NPs) are a rich source of medicines, but traditional discovery methods are often unsuccessful due to high rates of rediscovery. Genetic approaches for NP discovery are promising, but progress has been slow due to the difficulty of identifying unique biosynthetic gene clusters (BGCs) and poor gene expression. We previously developed the metabologenomics method, which combines genomic and metabolomic data to discover new NPs and their BGCs. Here, we utilize metabologenomics in combination with molecular networking to discover a novel class of NPs, the tyrobetaines: nonribosomal peptides with an unusual trimethylammonium tyrosine residue. The BGC for this unusual class of compounds was identified using metabologenomics and computational structure prediction data. Heterologous expression confirmed the BGC and suggests an unusual mechanism for trimethylammonium formation. Overall, the discovery of the tyrobetaines shows the great potential of metabologenomics combined with molecular networking and computational structure prediction for identifying interesting biosynthetic reactions and novel NPs.


Assuntos
Produtos Biológicos/metabolismo , Descoberta de Drogas , Genômica , Metabolômica , Família Multigênica , Betaína/análogos & derivados , Vias Biossintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA