Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(24): 30013-23, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606931

RESUMO

The two-dimensional single shot transverse coherence of the Self-Amplified Spontaneous Emission of the SPARC_LAB Free-Electron Laser was measured through the statistical analysis of a speckle field produced by heterodyning the radiation beam with a huge number of reference waves, scattered by a suspension of particles. In this paper we report the measurements and the evaluation of the transverse coherence along the SPARC_LAB undulator modules. The measure method was demonstrated to be precise and robust, it does not require any a priori assumptions and can be implemented over a wide range of wavelengths, from the optical radiation to the x-rays.


Assuntos
Amplificadores Eletrônicos , Elétrons , Lasers , Óptica e Fotônica/métodos , Simulação por Computador , Modelos Teóricos , Termodinâmica
2.
HardwareX ; 19: e00569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39253063

RESUMO

We propose a compact, portable, and low-cost holographic microscope designed for the characterization of micrometric particles suspended in a liquid. This system is built around a commercial optical microscope by substituting its illumination source (a light-emitting diode) with a collimated laser beam. Similarly, a quartz flow cell replaces the microscope glass slide using a 3D-printed custom mount. With the hardware presented in this paper, the holographic imaging of the electromagnetic fields emitted by the particles that intercept the laser beam achieves a resolution close to that of optical microscopes but with a greater depth of field. Several morphological and optical features can be extracted from the holograms, including particle projected section, aspect ratio, and extinction cross-section. Additionally, we introduce a remote system control that enables users to process the acquired holograms on a remote computational device. This work provides a comprehensive description of the methodology of image processing in holographic microscopy and a series of validation measurements conducted using calibrated particles. This technique is suitable for the characterization of airborne particles found in snow, firn, and ice; here we report experimental results obtained from Alpine ice cores.

3.
Rev Sci Instrum ; 91(7): 075108, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752848

RESUMO

We describe a light scattering technique for characterizing colloidal samples under constant flow. It exploits the properties of speckles in the deep Fresnel region-the so-called near field speckles-providing absolute scattering measurements of the static form factor of the sample, as described extensively by Mazzoni et al. [Rev. Sci. Instrum. 84, 043704 (2013)] for static samples. We exploit a strongly astigmatic beam for illuminating the scattering volume with a light sheet a few microns thick. This largely improves the sensitivity of the method to small signals. Moreover, by flowing the sample in the direction perpendicular to the light sheet, the transit times are reduced to a minimum, allowing for fast measurements. We tested the instrument with suspensions of calibrated colloidal polystyrene spheres with a size comparable to the light wavelength. In particular, we recovered the static form factors of suspensions of spherical particles and the phase lag of the zero-angle scattering amplitude, which both compare well to Mie theory predictions. We then applied the method to colloidal fractal aggregates of sub-wavelength particles and measured their fractal dimension. The instrument is designed to be operational in continuous flow analysis systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA