Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Liver Int ; 42(1): 233-248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478594

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a form of primary liver cancer with limited therapeutic options. Recently, cancer stem cells (CSCs) have been proposed as a driving force of tumour initiation and dissemination, thus representing a crucial therapeutic target. The protease inhibitor SerpinB3 (SB3) has been identified in several malignancies including hepatocellular carcinoma. SB3 has been involved in the early events of hepatocarcinogenesis and is highly expressed in hepatic progenitor cells and in a mouse model of liver progenitor cell activation. However, only limited information on the possible role of SB3 in CCA stem-like compartment is available. METHODS: Enrichment of CCA stem-like subset was performed by sphere culture (SPH) in CCA cell lines (CCLP1, HUCCT1, MTCHC01 and SG231). Quantitative RT-PCR and Western blotting were used to detect SB3 in both SPH and parental monolayer (MON) cells. Acquired CSC-like features were analysed using an endogenous and a paracrine in vitro model, with transfection of SB3 gene or addition of recombinant SB3 to cell medium respectively. SB3 tumorigenic role was explored in an in vivo mouse model of CCA by subcutaneous injection of SB3-transfected MON (MONSB3+ ) cells in immune-deficient NOD-SCID/IL2Rgnull  (NSG) mice. SB3 expression in human CCA sections was investigated by immunohistochemistry. Overall survival (OS) and time to recurrence (TTR) analyses were carried out from a transcriptome database of 104 CCA patients. RESULTS: SB3, barely detected in parental MON cells, was overexpressed in the same CCA cells grown as 3D SPH. Notably, MONSB3+ showed significant overexpression of genes associated with stemness (CD24, CD44, CD133), pluripotency (c-MYC, NOTCH1, STAT3, YAP, NANOG, BMI1, KLF4, OCT4, SOX2), epithelial mesenchymal transition (ß-catenin, SLUG) and extracellular matrix remodelling (MMP1, MMP7, MMP9, ADAM9, ADAM10, ADAM17, ITGB3). SB3-overexpressing cells showed superior spherogenic capacity and invasion ability compared to control. Importantly, MONSB3+ exhibited activation of MAP kinases (ERK1/2, p38, JNK) as well as phosphorylation of NFκB (p65) in addition to up-regulation of the proto-oncogene ß-catenin. All these effects were reversed after transient silencing of SB3. According to the in vitro finding, MONSB3+ cells retained high tumorigenic potential in NSG mice. SB3 overexpression was observed in human CCA tissues and analysis of OS as well as TTR indicated a worse prognosis in SB3+ CCA patients. CONCLUSION: These findings indicate a SB3 role in mediating malignant phenotype of CCA and identify a new therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , Proteínas ADAM/metabolismo , Animais , Antígenos de Neoplasias , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases , Serpinas
2.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35066640

RESUMO

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Assuntos
Resistência à Insulina , Proteínas Tirosina Fosfatases , Receptor de Insulina , Chá , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Insulina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Chá/química
3.
Nucleic Acids Res ; 48(16): 8943-8958, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32697292

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a complex transcriptional program induced by transforming growth factor ß1 (TGF-ß1). Histone lysine-specific demethylase 1 (LSD1) has been recognized as a key mediator of EMT in cancer cells, but the precise mechanism that underlies the activation and repression of EMT genes still remains elusive. Here, we characterized the early events induced by TGF-ß1 during EMT initiation and establishment. TGF-ß1 triggered, 30-90 min post-treatment, a nuclear oxidative wave throughout the genome, documented by confocal microscopy and mass spectrometry, mediated by LSD1. LSD1 was recruited with phosphorylated SMAD2/3 to the promoters of prototypic genes activated and repressed by TGF-ß1. After 90 min, phospho-SMAD2/3 downregulation reduced the complex and LSD1 was then recruited with the newly synthesized SNAI1 and repressors, NCoR1 and HDAC3, to the promoters of TGF-ß1-repressed genes such as the Wnt soluble inhibitor factor 1 gene (WIF1), a change that induced a late oxidative burst. However, TGF-ß1 early (90 min) repression of transcription also required synchronous signaling by reactive oxygen species and the stress-activated kinase c-Jun N-terminal kinase. These data elucidate the early events elicited by TGF-ß1 and the priming role of DNA oxidation that marks TGF-ß1-induced and -repressed genes involved in the EMT.


Assuntos
DNA/metabolismo , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/fisiologia , Proteína Smad2/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos
4.
J Hepatol ; 72(6): 1159-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31954205

RESUMO

BACKGROUND & AIMS: Only limited therapeutic options are currently available for hepatocellular carcinoma (HCC), making the development of effective alternatives essential. Based on the recent finding that systemic or local hypothyroidism is associated with HCC development in humans and rodents, we investigated whether the thyroid hormone triiodothyronine (T3) could inhibit the progression of HCCs. METHODS: Different rat and mouse models of hepatocarcinogenesis were investigated. The effect of T3 on tumorigenesis and metabolism/differentiation was evaluated by transcriptomic analysis, quantitative reverse transcription PCR, immunohistochemistry, and enzymatic assay. RESULTS: A short treatment with T3 caused a shift in the global expression profile of the most aggressive preneoplastic nodules towards that of normal liver. This genomic reprogramming preceded the disappearance of nodules and involved reprogramming of metabolic genes, as well as pro-differentiating transcription factors, including Kruppel-like factor 9, a target of the thyroid hormone receptor ß (TRß). Treatment of HCC-bearing rats with T3 strongly reduced the number and burden of HCCs. Reactivation of a local T3/TRß axis, a switch from Warburg to oxidative metabolism and loss of markers of poorly differentiated hepatocytes accompanied the reduced burden of HCC. This effect persisted 1 month after T3 withdrawal, suggesting a long-lasting effect of the hormone. The antitumorigenic effect of T3 was further supported by its inhibitory activity on cell growth and the tumorigenic ability of human HCC cell lines. CONCLUSIONS: Collectively, these findings suggest that reactivation of the T3/TRß axis induces differentiation of neoplastic cells towards a more benign phenotype and that T3 or its analogs, particularly agonists of TRß, could be useful tools in HCC therapy. LAY SUMMARY: Hepatocellular carcinoma (HCC) represents an important challenge for global health. Recent findings showed that systemic or local hypothyroidism is associated with HCC development. In rat models, we showed that administration of the thyroid hormone T3 impaired HCC progression, even when given at late stages. This is relevant from a translational point of view as HCC is often diagnosed at an advanced stage when it is no longer amenable to curative treatments. Thyroid hormones and/or thyromimetics could be useful for the treatment of patients with HCC.


Assuntos
Anticarcinógenos/administração & dosagem , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Progressão da Doença , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Tri-Iodotironina/administração & dosagem , Idoso , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Receptores beta dos Hormônios Tireóideos/metabolismo , Transcriptoma , Tri-Iodotironina/metabolismo
5.
Chemistry ; 25(45): 10606-10615, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31107567

RESUMO

A comparative study between two novel, highly water soluble, ruthenium(II) polypyridyl complexes, [Ru(phen)2 L'] and [Ru(phen)2 Cu(II)L'] (L and L-CuII ), containing the polyaazamacrocyclic unit 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L'), is herein reported. L and L-CuII interact with calf-thymus DNA and efficiently cleave DNA plasmid when light-activated. They also possess great penetration abilities and photo-induced biological activities, evaluated on an A375 human melanoma cell line, with L-CuII being the most effective. Our study highlights the key role of the Fenton active CuII center within the macrocycle framework, that would play a synergistic role with light activation in the formation of cytotoxic ROS species. Based on these results, an optimal design of RuII polypyridyl systems featuring specific CuII -chelating polyamine units could represent a suitable strategy for the development of novel and effective photosensitizers in photodynamic therapy.


Assuntos
Complexos de Coordenação/química , Fármacos Fotossensibilizantes/química , Rutênio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , DNA/química , Clivagem do DNA/efeitos dos fármacos , Humanos , Microscopia Confocal , Fármacos Fotossensibilizantes/farmacologia , Piridinas/química , Oxigênio Singlete/metabolismo
6.
Mol Cell Proteomics ; 16(7): 1348-1364, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483926

RESUMO

In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Escherichia coli/genética , Lipoproteínas/metabolismo , Neisseria meningitidis/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Lipoproteínas/genética , Neisseria meningitidis/genética , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Bacteriana
7.
Microb Cell Fact ; 16(1): 68, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28438207

RESUMO

BACKGROUND: The exploitation of the CRISPR/Cas9 machinery coupled to lambda (λ) recombinase-mediated homologous recombination (recombineering) is becoming the method of choice for genome editing in E. coli. First proposed by Jiang and co-workers, the strategy has been subsequently fine-tuned by several authors who demonstrated, by using few selected loci, that the efficiency of mutagenesis (number of mutant colonies over total number of colonies analyzed) can be extremely high (up to 100%). However, from published data it is difficult to appreciate the robustness of the technology, defined as the number of successfully mutated loci over the total number of targeted loci. This information is particularly relevant in high-throughput genome editing, where repetition of experiments to rescue missing mutants would be impractical. This work describes a "brute force" validation activity, which culminated in the definition of a robust, simple and rapid protocol for single or multiple gene deletions. RESULTS: We first set up our own version of the CRISPR/Cas9 protocol and then we evaluated the mutagenesis efficiency by changing different parameters including sequence of guide RNAs, length and concentration of donor DNAs, and use of single stranded and double stranded donor DNAs. We then validated the optimized conditions targeting 78 "dispensable" genes. This work led to the definition of a protocol, featuring the use of double stranded synthetic donor DNAs, which guarantees mutagenesis efficiencies consistently higher than 10% and a robustness of 100%. The procedure can be applied also for simultaneous gene deletions. CONCLUSIONS: This work defines for the first time the robustness of a CRISPR/Cas9-based protocol based on a large sample size. Since the technical solutions here proposed can be applied to other similar procedures, the data could be of general interest for the scientific community working on bacterial genome editing and, in particular, for those involved in synthetic biology projects requiring high throughput procedures.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes , Família Multigênica , Deleção de Genes , Genoma Bacteriano , Recombinação Homóloga , Mutagênese , RNA Guia de Cinetoplastídeos , Recombinases/metabolismo , Biologia Sintética/métodos
8.
Br J Cancer ; 115(1): 40-51, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27328312

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents have limited efficacy. METHODS: The atypical cadherin FAT1 was discovered as a novel CRC-associated protein by using a monoclonal antibody (mAb198.3). FAT1 expression was assessed in CRC cells by immunohistochemistry (IHC), immunoblots, flow cytometry and confocal microscopy. In addition, in vitro and in vivo tumour models were done to assess FAT1 potential value for therapeutic applications. RESULTS: The study shows that FAT1 is broadly expressed in primary and metastatic CRC stages and detected by mAb198.3, regardless of KRAS and BRAF mutations. FAT1 mainly accumulates at the plasma membrane of cancer cells, whereas it is only marginally detected in normal human samples. Moreover, the study shows that FAT1 has an important role in cell invasiveness while it does not significantly influence apoptosis. mAb198.3 specifically recognises FAT1 on the surface of colon cancer cells and is efficiently internalised. Furthermore, it reduces cancer growth in a colon cancer xenograft model. CONCLUSIONS: This study provides evidence that FAT1 and mAb198.3 may offer new therapeutic opportunities for CRC including the tumours resistant to current EGFR-targeted therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Caderinas/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Células HT29 , Humanos , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas ras/metabolismo
9.
Angiogenesis ; 17(4): 881-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903490

RESUMO

Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.


Assuntos
Angiopoietinas/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Diferenciação Celular , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/química , Sistema Endócrino , Células Endoteliais/citologia , Exossomos/metabolismo , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
10.
Lab Invest ; 93(3): 279-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318885

RESUMO

Recent studies sight ß-adrenergic receptor (AR) antagonists as novel therapeutic agents for melanoma, as they may reduce disease progression. Here within, we evaluated the expression of ß-ARs in a series of human cutaneous melanocytic lesions, and studied the effect of their endogenous agonists, norepinephrine (NE) and epinephrine (E), on primary and metastatic human melanoma cell lines. Using immunohistochemistry, we found that both ß1- and ß2-ARs are expressed in tissues from benign melanocytic naevi, atypical naevi and malignant melanomas and that expression was significantly higher in malignant tumours. Melanoma cell lines (human A375 primary melanoma cell line and human Hs29-4T metastatic melanoma cell lines) also expressed ß1- and ß2-ARs by measuring transcripts and proteins. NE or E increased metalloprotease-dependent motility, released interleukin-6 and 8 (IL-6, IL-8) and vascular endothelial growth factor (VEGF). These effects of catecholamines were inhibited by the unselective ß-AR antagonist propranolol. The role of soluble factors elicited by catecholamines seemed pleiotropic as VEGF synergized with NE increased melanoma invasiveness through 3D barriers, while IL-6 participated in stromal fibroblast activation towards a myofibroblastic phenotype. Our results indicate that NE and E produce in vitro via ß-ARs activation a number of biological responses that may exert a pro-tumorigenic effect in melanoma cell lines. The observation that ß-ARs are upregulated in malignant melanoma tissues support the hypothesis that circulating catecholamines NE and E, by activating their receptors, favour melanoma progression in vivo.


Assuntos
Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/metabolismo , Metaloproteases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Neoplasias Cutâneas/metabolismo , Adulto , Western Blotting , Linhagem Celular Tumoral , Primers do DNA/genética , Epinefrina/farmacologia , Feminino , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Norepinefrina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Cancers (Basel) ; 15(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444437

RESUMO

In situ vaccination (ISV) is a promising cancer immunotherapy strategy that consists of the intratumoral administration of immunostimulatory molecules (adjuvants). The rationale is that tumor antigens are abundant at the tumor site, and therefore, to elicit an effective anti-tumor immune response, all that is needed is an adjuvant, which can turn the immunosuppressive environment into an immunologically active one. Bacterial outer membrane vesicles (OMVs) are potent adjuvants since they contain several microbe-associated molecular patterns (MAMPs) naturally present in the outer membrane and in the periplasmic space of Gram-negative bacteria. Therefore, they appear particularly indicted for ISV. In this work, we first show that the OMVs from E. coli BL21(DE3)Δ60 strain promote a strong anti-tumor activity when intratumorally injected into the tumors of three different mouse models. Tumor inhibition correlates with a rapid infiltration of DCs and NK cells. We also show that the addition of neo-epitopes to OMVs synergizes with the vesicle adjuvanticity, as judged by a two-tumor mouse model. Overall, our data support the use of the OMVs in ISV and indicate that ISV efficacy can benefit from the addition of properly selected tumor-specific neo-antigens.

12.
Antioxidants (Basel) ; 11(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009263

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most common and aggressive OC histotype. Although initially sensitive to standard platinum-based chemotherapy, most HGSOC patients relapse and become chemoresistant. We have previously demonstrated that platinum resistance is driven by a metabolic shift toward oxidative phosphorylation via activation of an inflammatory response, accompanied by reduced cholesterol biosynthesis and increased uptake of exogenous cholesterol. To better understand metabolic remodeling in OC, herein we performed an untargeted metabolomic analysis, which surprisingly showed decreased reduced glutathione (GSH) levels in resistant cells. Accordingly, we found reduced levels of enzymes involved in GSH synthesis and recycling, and compensatory increased expression of thioredoxin reductase. Cisplatin treatment caused an increase of reduced GSH, possibly due to direct binding hindering its oxidation, and consequent accumulation of reactive oxygen species. Notably, expression of the cysteine-glutamate antiporter xCT, which is crucial for GSH synthesis, directly correlates with post-progression survival of HGSOC patients, and is significantly reduced in patients not responding to platinum-based therapy. Overall, our data suggest that cisplatin treatment could positively select cancer cells which are independent from GSH for the maintenance of redox balance, and thus less sensitive to cisplatin-induced oxidative stress, opening new scenarios for the GSH pathway as a therapeutic target in HGSOC.

13.
Mol Cell Endocrinol ; 547: 111594, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149119

RESUMO

Germline mutations in more than 20 genes, including those encoding for the succinate dehydrogenase (SDH), predispose to rare tumours, such as pheochromocytoma/paraganglioma (PPGL). Despite encoding for the same enzymatic complex, SDHC and SDHD mutated PHEO/PGLs are generally benign, while up to 80% of SDHB mutated ones are malignant. In this study, we evaluated the different effects of tumour microenvironment on tumour cell migration/invasion, by co-culturing SDHB or SDHD silenced tumour spheroids with primary cancer-associated fibroblasts (CAFs). We observed that SDHD silenced spheroids had an intermediate migration pattern, compared to the highest migration capability of SDHB and the lowest one of the wild type (Wt) spheroids. Interestingly, we noticed that co-culturing Wt, SDHB and SDHD silenced spheroids with CAFs in low glucose (1 g/l) medium, caused a decreased migration of all the spheroids, but only for SDHB silenced ones this reduction was significant. Moreover, the collective migration, observed in high glucose (4.5 g/l) and characteristic of the SDHB silenced cells, was completely lost in low glucose. Importantly, migration could not be recovered even adding glucose (3.5 g/l) to low glucose conditioned medium. When we investigated cell metabolism, we found that low glucose concentration led to a reduction of oxygen consumption rate (OCR), basal and maximal oxidative metabolism, and ATP production only in CAFs, but not in tumour cells. These results suggest that CAFs metabolism impairment was responsible for the decreased invasion process of tumour cells, most likely preventing the release of the pro-migratory factors produced by CAFs. In conclusion, the interplay between CAFs and tumour cells is distinctive depending on the gene involved, and highlights the possibility to inhibit CAF-induced migration by impairing CAFs metabolism, indicating new potential therapeutic scenarios for medical therapy.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/metabolismo , Mutação em Linhagem Germinativa , Humanos , Paraganglioma/genética , Paraganglioma/patologia , Feocromocitoma/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Microambiente Tumoral
14.
Sci Rep ; 12(1): 18526, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323868

RESUMO

In elite athlete several metabolic changes occur during regular training. These modifications are associated with changes in blood metabolic profile and can lead to adaptive mechanisms aimed at establish a new dynamic equilibrium, which guarantees better performance. The goal of this study was to characterize the plasma metabolic profile and redox homeostasis, in athletes practicing two different team sports such as soccer and basketball in order to identify potential metabolic pathways underlying the differences in training programs. A cohort of 30 male, 20 professional players (10 soccer and 10 basketballs) and 10 sedentary males as control were enrolled in the study. Plasma redox balance, metabolites and adiponectin were determined. The results show low levels of oxidative species (25.5%), with both high antioxidant capacity (17.6%) and adiponectin level (64.4%) in plasma from basketball players, in comparison to soccer players. Metabolic analysis indicates in basketball players a significant high plasma level of amino acids Valine and Ornithine both involved in redox homeostasis and anti-inflammatory metabolism.


Assuntos
Basquetebol , Futebol , Humanos , Masculino , Adiponectina , Atletas , Estresse Oxidativo
15.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552757

RESUMO

Oil production waste products (OPWPs) derive from olive mill and represent a crucial environmental problem due to their high polyphenolic content able to pollute the ground. One option to reduce the OPWPs' environmental impact is to exploit polyphenols' biological properties. We sought to analyze the transcriptomic variations of colorectal cancer cells exposed to the OPWPs extracts and hydroxytyrosol, the major component, to recognize unknown and ill-defined characteristics. Among the top affected pathways identified by GSEA, we focused on oxidative phosphorylation in an in vitro system. Colorectal cancer HCT116 and LoVo cells treated with hydroxytyrosol or OPWPs extracts showed enhancement of the respiratory chain complexes' protein levels, ATP production and membrane potential, suggesting stimulation of mitochondrial functions. The major proteins involved in mitochondrial biogenesis and fusion events of mitochondrial dynamics were positively affected, as by Western blot, fostering increase of the mitochondrial mass organized in a network of elongated organelles. Mechanistically, we proved that PPARγ mediates the effects as they are mimicked by a specific ligand and impaired by a specific inhibitor. OPWP extracts and hydroxytyrosol, thus, promote mitochondrial functionality via a feed-forward regulatory loop involving the PPARγ/PGC-1α axis. These results support their use in functional foods and as adjuvants in cancer therapy.


Assuntos
Neoplasias Colorretais , Resíduos , Humanos , PPAR gama/metabolismo , Transcriptoma , Extratos Vegetais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
16.
Cancer Res ; 82(7): 1267-1282, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135811

RESUMO

Lactate is an abundant oncometabolite in the tumor environment. In prostate cancer, cancer-associated fibroblasts (CAF) are major contributors of secreted lactate, which can be taken up by cancer cells to sustain mitochondrial metabolism. However, how lactate impacts transcriptional regulation in tumors has yet to be fully elucidated. Here, we describe a mechanism by which CAF-secreted lactate is able to increase the expression of genes involved in lipid metabolism in prostate cancer cells. This regulation enhanced intracellular lipid accumulation in lipid droplets (LD) and provided acetyl moieties for histone acetylation, establishing a regulatory loop between metabolites and epigenetic modification. Inhibition of this loop by targeting the bromodomain and extraterminal protein family of histone acetylation readers suppressed the expression of perilipin 2 (PLIN2), a crucial component of LDs, disrupting lactate-dependent lipid metabolic rewiring. Inhibition of this CAF-induced metabolic-epigenetic regulatory loop in vivo reduced growth and metastasis of prostate cancer cells, demonstrating its translational relevance as a therapeutic target in prostate cancer. Clinically, PLIN2 expression was elevated in tumors with a higher Gleason grade and in castration-resistant prostate cancer compared with primary prostate cancer. Overall, these findings show that lactate has both a metabolic and an epigenetic role in promoting prostate cancer progression. SIGNIFICANCE: This work shows that stromal-derived lactate induces accumulation of lipid droplets, stimulates epigenetic rewiring, and fosters metastatic potential in prostate cancer.


Assuntos
Metabolismo dos Lipídeos , Neoplasias da Próstata , Epigênese Genética , Humanos , Ácido Láctico/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia
17.
Cell Rep ; 40(7): 111233, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977477

RESUMO

5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.


Assuntos
Neoplasias Colorretais , Neoplasias , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo
18.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552790

RESUMO

Cancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies. Thus, we focused on the effects of chemotherapy on the stromal compartment of prostate and ovarian cancer. We demonstrated that anticancer chemotherapeutics, regardless of their specific mechanism of action, promote a senescent phenotype in stromal fibroblasts, resulting in metabolic alterations and secretion of paracrine factors, sustaining the invasive and clonogenic potential of both prostate and ovarian cancer cells. The clearance of senescent stromal cells, through senolytic drug treatment, reverts the malignant phenotype of tumor cells. The clinical relevance of TIS was validated in ovarian and prostate cancer patients, highlighting increased accumulation of lipofuscin aggregates, a marker of the senescent phenotype, in the stromal compartment of tissues from chemotherapy-treated patients. These data provide new insights into the potential efficacy of combining traditional anticancer strategies with innovative senotherapy to potentiate anticancer treatments and overcome the adverse effects of chemotherapy.


Assuntos
Neoplasias Ovarianas , Neoplasias da Próstata , Humanos , Masculino , Feminino , Neoplasias Ovarianas/genética , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Fenótipo , Microambiente Tumoral
19.
Healthcare (Basel) ; 9(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806196

RESUMO

BACKGROUND: Most studies on oxidative stress markers and antioxidant levels have been conducted in male athletes, although female participation in sport has increased rapidly in the past few decades. In particular, it could be important to assess oxidative stress markers in relation to the training load because the anaerobic path becomes predominant in high-intensity actions. METHODS: Ten female professional basketball players, performing five 2 h-lasting training sessions per week, and 10 sedentary control women were investigated. Capillary blood and saliva samples were collected in the morning before the training session. The antioxidant capacity and the levels of reactive oxygen metabolites on plasma were determined measuring Reactive Oxygen Metabolite and Biological Antioxidant Potential (d-ROMs and the BAP Test). Salivary cortisol was detected by using commercial enzyme-linked immunosorbent assay kit. RESULTS: The antioxidant capacity (BAP value) was significantly higher in elite basketball players (21.2%; p < 0.05). Conversely, cortisol (51%; p < 0.009) and the levels of oxidative species (d-ROM, 21.9%; p < 0.05) showed a significant decrease in elite athletes.

20.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34638478

RESUMO

miR-27a plays a driver role in rewiring tumor cell metabolism. We searched for new miR-27a targets that could affect mitochondria and identified FOXJ3, an apical factor of mitochondrial biogenesis. We analyzed FOXJ3 levels in an in vitro cell model system that was genetically modified for miR-27a expression and validated it as an miR-27a target. We showed that the miR-27a/FOXJ3 axis down-modulates mitochondrial biogenesis and other key members of the pathway, implying multiple levels of control. As assessed by specific markers, the miR-27a/FOXJ3 axis also dysregulates mitochondrial dynamics, resulting in fewer, short, and punctate organelles. Consistently, in high miR-27a-/low FOXJ3-expressing cells, mitochondria are functionally characterized by lower superoxide production, respiration capacity, and membrane potential, as evaluated by OCR assays and confocal microscopy. The analysis of a mouse xenograft model confirmed FOXJ3 as a target and suggested that the miR-27a/FOXJ3 axis affects mitochondrial abundance in vivo. A survey of the TCGA-COADREAD dataset supported the inverse relationship of FOXJ3 with miR-27a and reinforced cellular component organization or biogenesis as the most affected pathway. The miR-27a/FOXJ3 axis acts as a central hub in regulating mitochondrial homeostasis. Its discovery paves the way for new therapeutic strategies aimed at restraining tumor growth by targeting mitochondrial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA