Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 148(3): 458-72, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22265598

RESUMO

Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Animais , Núcleo Celular/genética , Cromossomos de Insetos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Modelos Estatísticos , Complexo Repressor Polycomb 1
2.
Cell ; 150(6): 1147-57, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980978

RESUMO

Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3'-5' exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação Viral da Expressão Gênica , HIV-1/genética , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Sequência de Bases , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , DNA Helicases , Repetição Terminal Longa de HIV , Humanos , Dados de Sequência Molecular , Enzimas Multifuncionais , Regiões Promotoras Genéticas , Interferência de RNA , RNA Viral/química , RNA Viral/genética , Fatores de Transcrição/metabolismo
3.
BMC Biol ; 22(1): 141, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926709

RESUMO

BACKGROUND: The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS: We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS: Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.


Assuntos
Evolução Molecular , Processos de Determinação Sexual , Animais , Processos de Determinação Sexual/genética , Masculino , Feminino , Percas/genética , Filogenia , Receptores de Peptídeos/genética , Genoma , Receptores de Fatores de Crescimento Transformadores beta
4.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36161446

RESUMO

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Assuntos
RNA Helicases DEAD-box , HIV-1 , Vírus de RNA de Cadeia Positiva , Replicação Viral , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , HIV-1/fisiologia , Vírus de RNA de Cadeia Positiva/fisiologia , SARS-CoV-2/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880131

RESUMO

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.


Assuntos
Bass/genética , Regulação da Temperatura Corporal/genética , Genótipo , Herança Multifatorial , Processos de Determinação Sexual/genética , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Metilação de DNA , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Reprodutibilidade dos Testes , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Temperatura
6.
BMC Biol ; 20(1): 8, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996449

RESUMO

BACKGROUND: The application of CRISPR/Cas9 technology in human induced pluripotent stem cells (hiPSC) holds tremendous potential for basic research and cell-based gene therapy. However, the fulfillment of these promises relies on the capacity to efficiently deliver exogenous nucleic acids and harness the repair mechanisms induced by the nuclease activity in order to knock-out or repair targeted genes. Moreover, transient delivery should be preferred to avoid persistent nuclease activity and to decrease the risk of off-target events. We recently developed bacteriophage-chimeric retrovirus-like particles that exploit the properties of bacteriophage coat proteins to package exogenous RNA, and the benefits of lentiviral transduction to achieve highly efficient, non-integrative RNA delivery in human cells. Here, we investigated the potential of bacteriophage-chimeric retrovirus-like particles for the non-integrative delivery of RNA molecules in hiPSC for CRISPR/Cas9 applications. RESULTS: We found that these particles efficiently convey RNA molecules for transient expression in hiPSC, with minimal toxicity and without affecting the cell pluripotency and subsequent differentiation. We then used this system to transiently deliver in a single step the CRISPR-Cas9 components (Cas9 mRNA and sgRNA) to generate gene knockout with high indel rate (up to 85%) at multiple loci. Strikingly, when using an allele-specific sgRNA at a locus harboring compound heterozygous mutations, the targeted allele was not altered by NHEJ/MMEJ, but was repaired at high frequency using the homologous wild type allele, i.e., by interallelic gene conversion. CONCLUSIONS: Our results highlight the potential of bacteriophage-chimeric retrovirus-like particles to efficiently and safely deliver RNA molecules in hiPSC, and describe for the first time genome engineering by gene conversion in hiPSC. Harnessing this DNA repair mechanism could facilitate the therapeutic correction of human genetic disorders in hiPSC.


Assuntos
Bacteriófagos , Células-Tronco Pluripotentes Induzidas , Alelos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Conversão Gênica , Edição de Genes/métodos , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA/metabolismo , Retroviridae/genética
7.
Glob Chang Biol ; 28(13): 4124-4142, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527235

RESUMO

The assessment of population vulnerability under climate change is crucial for planning conservation as well as for ensuring food security. Coffea canephora is, in its native habitat, an understorey tree that is mainly distributed in the lowland rainforests of tropical Africa. Also known as Robusta, its commercial value constitutes a significant revenue for many human populations in tropical countries. Comparing ecological and genomic vulnerabilities within the species' native range can provide valuable insights about habitat loss and the species' adaptive potential, allowing to identify genotypes that may act as a resource for varietal improvement. By applying species distribution models, we assessed ecological vulnerability as the decrease in climatic suitability under future climatic conditions from 492 occurrences. We then quantified genomic vulnerability (or risk of maladaptation) as the allelic composition change required to keep pace with predicted climate change. Genomic vulnerability was estimated from genomic environmental correlations throughout the native range. Suitable habitat was predicted to diminish to half its size by 2050, with populations near coastlines and around the Congo River being the most vulnerable. Whole-genome sequencing revealed 165 candidate SNPs associated with climatic adaptation in C. canephora, which were located in genes involved in plant response to biotic and abiotic stressors. Genomic vulnerability was higher for populations in West Africa and in the region at the border between DRC and Uganda. Despite an overall low correlation between genomic and ecological vulnerability at broad scale, these two components of vulnerability overlap spatially in ways that may become damaging. Genomic vulnerability was estimated to be 23% higher in populations where habitat will be lost in 2050 compared to regions where habitat will remain suitable. These results highlight how ecological and genomic vulnerabilities are relevant when planning on how to cope with climate change regarding an economically important species.


Assuntos
Coffea , Mudança Climática , Coffea/genética , Café , Genoma de Planta , Genômica , Humanos
8.
Mol Cell ; 54(4): 691-7, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24856221

RESUMO

In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins, whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3Δ cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.


Assuntos
Replicação do DNA , DNA Ribossômico/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , Epigênese Genética , Deleção de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS Genet ; 15(8): e1008013, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437150

RESUMO

Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade.


Assuntos
Hormônio Antimülleriano/genética , Esocidae/fisiologia , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Animais , Animais Geneticamente Modificados , Mapeamento Cromossômico , Feminino , Duplicação Gênica , Técnicas de Silenciamento de Genes , Masculino , Filogenia , Sintenia
10.
Mol Biol Evol ; 37(8): 2369-2385, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302396

RESUMO

Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BayPass. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level.


Assuntos
Adaptação Biológica , Drosophila/genética , Genoma de Inseto , Espécies Introduzidas , Modelos Genéticos , Animais , Frequência do Gene
11.
Genome Res ; 28(11): 1733-1746, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287550

RESUMO

The mammalian cell nucleus contains numerous discrete suborganelles named nuclear bodies. While recruitment of specific genomic regions into these large ribonucleoprotein (RNP) complexes critically contributes to higher-order functional chromatin organization, such regions remain ill-defined. We have developed the high-salt-recovered sequences-sequencing (HRS-seq) method, a straightforward genome-wide approach whereby we isolated and sequenced genomic regions associated with large high-salt insoluble RNP complexes. By using mouse embryonic stem cells (ESCs), we showed that these regions essentially correspond to the most highly expressed genes, and to cis-regulatory sequences like super-enhancers, that belong to the active A chromosomal compartment. They include both cell-type-specific genes, such as pluripotency genes in ESCs, and housekeeping genes associated with nuclear bodies, such as histone and snRNA genes that are central components of Histone Locus Bodies and Cajal bodies. We conclude that HRSs are associated with the active chromosomal compartment and with large RNP complexes including nuclear bodies. Association of such chromosomal regions with nuclear bodies is in agreement with the recently proposed phase separation model for transcription control and might thus play a central role in organizing the active chromosomal compartment in mammals.


Assuntos
Cromossomos/química , Ribonucleoproteínas/química , Animais , Células Cultivadas , Fracionamento Químico/métodos , Cromossomos/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas/metabolismo , Salinidade
12.
BMC Genomics ; 21(1): 552, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781981

RESUMO

BACKGROUND: Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS: Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS: These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.


Assuntos
Carpa Dourada , Processos de Determinação Sexual , Animais , Feminino , Ligação Genética , Carpa Dourada/genética , Masculino , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y
13.
Nucleic Acids Res ; 45(18): 10466-10480, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985358

RESUMO

PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Impressão Genômica , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
14.
BMC Genomics ; 19(1): 804, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400811

RESUMO

BACKGROUND: A change in the environment may impair development or survival of living organisms leading them to adapt to the change. The resulting adaptation trait may reverse, or become fixed in the population leading to evolution of species. Deciphering the molecular basis of adaptive traits can thus give evolutionary clues. In phytophagous insects, a change in host-plant range can lead to emergence of new species. Among them, Spodoptera frugiperda is a major agricultural lepidopteran pest consisting of two host-plant strains having diverged 3 MA, based on mitochondrial markers. In this paper, we address the role of microRNAs, important gene expression regulators, in response to host-plant change and in adaptive evolution. RESULTS: Using small RNA sequencing, we characterized miRNA repertoires of the corn (C) and rice (R) strains of S. frugiperda, expressed during larval development on two different host-plants, corn and rice, in the frame of reciprocal transplant experiments. We provide evidence for 76 and 68 known miRNAs in C and R strains and 139 and 171 novel miRNAs. Based on read counts analysis, 34 of the microRNAs were differentially expressed in the C strain larvae fed on rice as compared to the C strain larvae fed on corn. Twenty one were differentially expressed on rice compared to corn in R strain. Nine were differentially expressed in the R strain compared to C strain when reared on corn. A similar ratio of microRNAs was differentially expressed between strains on rice. We could validate experimentally by QPCR, variation in expression of the most differentially expressed candidates. We used bioinformatics methods to determine the target mRNAs of known microRNAs. Comparison with the mRNA expression profile during similar reciprocal transplant experiment revealed potential mRNA targets of these host-plant regulated miRNAs. CONCLUSIONS: In the current study, we performed the first systematic analysis of miRNAs in Lepidopteran pests feeding on host-plants. We identified a set of the differentially expressed miRNAs that respond to the plant diet, or differ constitutively between the two host plant strains. Among the latter, the ones that are also deregulated in response to host-plant are molecular candidates underlying a complex adaptive trait.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Insetos/genética , MicroRNAs/genética , Oryza/parasitologia , Spodoptera/genética , Zea mays/parasitologia , Animais , Biologia Computacional , Comportamento Alimentar , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Larva , Spodoptera/classificação
15.
Genome Res ; 25(3): 353-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614607

RESUMO

Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.


Assuntos
Epigenômica/métodos , Impressão Genômica , Adipogenia/genética , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Análise por Conglomerados , Biologia Computacional/métodos , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Matriz Extracelular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos
16.
Acta Neuropathol ; 135(2): 267-283, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29149419

RESUMO

Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/metabolismo , Cromatina/metabolismo , Glioblastoma/metabolismo , Idoso , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Células Cultivadas , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/patologia , Código das Histonas , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores do Domínio POU/metabolismo , Fatores de Transcrição SOX9/metabolismo
17.
BMC Genomics ; 17(1): 1007, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931189

RESUMO

BACKGROUND: Propionibacterium freudenreichii is an Actinobacterium widely used in the dairy industry as a ripening culture for Swiss-type cheeses, for vitamin B12 production and some strains display probiotic properties. It is reportedly a hardy bacterium, able to survive the cheese-making process and digestive stresses. RESULTS: During this study, P. freudenreichii CIRM-BIA 138 (alias ITG P9), which has a generation time of five hours in Yeast Extract Lactate medium at 30 °C under microaerophilic conditions, was incubated for 11 days (9 days after entry into stationary phase) in a culture medium, without any adjunct during the incubation. The carbon and free amino acids sources available in the medium, and the organic acids produced by the strain, were monitored throughout growth and survival. Although lactate (the preferred carbon source for P. freudenreichii) was exhausted three days after inoculation, the strain sustained a high population level of 9.3 log10 CFU/mL. Its physiological adaptation was investigated by RNA-seq analysis and revealed a complete disruption of metabolism at the entry into stationary phase as compared to exponential phase. CONCLUSIONS: P. freudenreichii adapts its metabolism during entry into stationary phase by down-regulating oxidative phosphorylation, glycolysis, and the Wood-Werkman cycle by exploiting new nitrogen (glutamate, glycine, alanine) sources, by down-regulating the transcription, translation and secretion of protein. Utilization of polyphosphates was suggested.


Assuntos
Adaptação Fisiológica , Propionibacterium freudenreichii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Regulação para Baixo , Glicólise/genética , Concentração de Íons de Hidrogênio , Metaboloma , Fosforilação Oxidativa , Oxigênio/metabolismo , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/crescimento & desenvolvimento , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , Análise de Sequência de RNA
18.
Mol Ecol ; 25(8): 1741-58, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26826554

RESUMO

Schistosoma mansoni is a parasitic platyhelminth responsible for intestinal bilharzia. It has a complex life cycle, infecting a freshwater snail of the Biomphalaria genus, and then a mammalian host. Schistosoma mansoni adapts rapidly to new (allopatric) strains of its intermediate host. To study the importance of epimutations in this process, we infected sympatric and allopatric mollusc strains with parasite clones. ChIP-Seq was carried out on four histone modifications (H3K4me3, H3K27me3, H3K27ac and H4K20me1) in parallel with genomewide DNA resequencing (i) on parasite larvae shed by the infected snails and (ii) on adult worms that had developed from the larvae. No change in single nucleotide polymorphisms and no mobilization of transposable elements were observed, but 58-105 copy number variations (CNVs) within the parasite clones in different molluscs were detected. We also observed that the allopatric environment induces three types of chromatin structure changes: (i) host-induced changes on larvae epigenomes in 51 regions of the genome that are independent of the parasites' genetic background, (ii) spontaneous changes (not related to experimental condition or genotype of the parasite) at 64 locations and (iii) 64 chromatin structure differences dependent on the parasite genotype. Up to 45% of the spontaneous, but none of the host-induced chromatin structure changes were transmitted to adults. In our model, the environment induces epigenetic changes at specific loci but only spontaneous epimutations are mitotically heritable and have therefore the potential to contribute to transgenerational inheritance. We also show that CNVs are the only source of genetic variation and occur at the same order of magnitude as epimutations.


Assuntos
Variações do Número de Cópias de DNA , Epigênese Genética , Schistosoma mansoni/genética , Animais , Biomphalaria/parasitologia , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina , Hibridização Genômica Comparativa , Elementos de DNA Transponíveis , Histonas/genética , Mitose , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Simpatria , Transcriptoma
19.
Plant Cell ; 23(2): 443-58, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21325139

RESUMO

Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize.


Assuntos
Meiose , Óvulo Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Reprodução Assexuada , Zea mays/genética , Centrômero/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Mutação , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Zea mays/fisiologia
20.
BMC Ecol ; 13: 25, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23866001

RESUMO

BACKGROUND: Exclusion from a social group is an effective way to avoid parasite transmission. This type of social removal has also been proposed as a form of collective defense, or social immunity, in eusocial insect groups. If parasitic modification of host behavior is widespread in social insects, the underlying physiological and neuronal mechanisms remain to be investigated. We studied this phenomenon in honey bees parasitized by the mite Varroa destructor or microsporidia Nosema ceranae, which make bees leave the hive precociously. We characterized the chemical, behavioral and neurogenomic changes in parasitized bees, and compared the effects of both parasites. RESULTS: Analysis of cuticular hydrocarbon (CHC) profiles by gas chromatography coupled with mass spectrophotometry (GC-MS) showed changes in honey bees parasitized by either Nosema ceranae or Varroa destructor after 5 days of infestation. Levels of 10-HDA, an antiseptic important for social immunity, did not change in response to parasitism. Behavioral analysis of N. ceranae- or V. destructor- parasitized bees revealed no significant differences in their behavioral acts or social interactions with nestmates. Digital gene expression (DGE) analysis of parasitized honey bee brains demonstrated that, despite the difference in developmental stage at which the bee is parasitized, Nosema and Varroa-infested bees shared more gene changes with each other than with honey bee brain expression gene sets for forager or nurse castes. CONCLUSIONS: Parasitism by Nosema or Varroa induces changes to both the CHC profiles on the surface of the bee and transcriptomic profiles in the brain, but within the social context of the hive, does not result in observable effects on her behavior or behavior towards her. While parasitized bees are reported to leave the hive as foragers, their brain transcription profiles suggest that their behavior is not driven by the same molecular pathways that induce foraging behavior.


Assuntos
Abelhas/parasitologia , Encéfalo/metabolismo , Ácaros , Nosema , Comportamento Social , Animais , Abelhas/fisiologia , Interações Hospedeiro-Parasita , Hidrocarbonetos/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA