Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Res ; 56(1): 34, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37349842

RESUMO

Dilated cardiomyopathy (DCM) is a primary myocardial disease, leading to heart failure and excessive risk of sudden cardiac death with rather poorly understood pathophysiology. In 2015, Parvari's group identified a recessive mutation in the autophagy regulator, PLEKHM2 gene, in a family with severe recessive DCM and left ventricular non-compaction (LVNC). Fibroblasts isolated from these patients exhibited abnormal subcellular distribution of endosomes, Golgi apparatus, lysosomes and had impaired autophagy flux. To better understand the effect of mutated PLEKHM2 on cardiac tissue, we generated and characterized induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs) from two patients and a healthy control from the same family. The patient iPSC-CMs showed low expression levels of genes encoding for contractile functional proteins (α and ß-myosin heavy chains and 2v and 2a-myosin light chains), structural proteins integral to heart contraction (Troponin C, T and I) and proteins participating in Ca2+ pumping action (SERCA2 and Calsequestrin 2) compared to their levels in control iPSC-derived CMs. Furthermore, the sarcomeres of the patient iPSC-CMs were less oriented and aligned compared to control cells and generated slowly beating foci with lower intracellular calcium amplitude and abnormal calcium transient kinetics, measured by IonOptix system and MuscleMotion software. Autophagy in patient's iPSC-CMs was impaired as determined from a decrease in the accumulation of autophagosomes in response to chloroquine and rapamycin treatment, compared to control iPSC-CMs. Impairment in autophagy together with the deficiency in the expression of NKX2.5, MHC, MLC, Troponins and CASQ2 genes, which are related to contraction-relaxation coupling and intracellular Ca2+ signaling, may contribute to the defective function of the patient CMs and possibly affect cell maturation and cardiac failure with time.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Cálcio/metabolismo , Cálcio/farmacologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Mutação , Miócitos Cardíacos/metabolismo
2.
PLoS Genet ; 16(9): e1009000, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925938

RESUMO

Dilated cardiomyopathy (DCM) is a common cause of heart failure and sudden cardiac death. It has been estimated that up to half of DCM cases are hereditary. Mutations in more than 50 genes, primarily autosomal dominant, have been reported. Although rare, recessive mutations are thought to contribute considerably to DCM, especially in young children. Here we identified a novel recessive mutation in the striated muscle enriched protein kinase (SPEG, p. E1680K) gene in a family with nonsyndromic, early onset DCM. To ascertain the pathogenicity of this mutation, we generated SPEG E1680K homozygous mutant human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) using CRISPR/Cas9-mediated genome editing. Functional studies in mutant iPSC-CMs showed aberrant calcium homeostasis, impaired contractility, and sarcomeric disorganization, recapitulating the hallmarks of DCM. By combining genetic analysis with human iPSCs, genome editing, and functional assays, we identified SPEG E1680K as a novel mutation associated with early onset DCM and provide evidence for its pathogenicity in vitro. Our study provides a conceptual paradigm for establishing genotype-phenotype associations in DCM with autosomal recessive inheritance.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Idade de Início , Cálcio/metabolismo , Cardiomiopatia Dilatada/etiologia , Células Cultivadas , Criança , Pré-Escolar , Feminino , Edição de Genes , Genes Recessivos , Proteínas de Choque Térmico , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lactente , Masculino , Proteínas Musculares/metabolismo , Mutação , Contração Miocárdica , Miócitos Cardíacos/patologia , Linhagem , Fragmentos de Peptídeos , Proteínas Serina-Treonina Quinases/metabolismo , Sequenciamento do Exoma
3.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240210

RESUMO

Weill-Marchesani syndrome (WMS) is a rare genetic inherited disorder with autosomal recessive and dominant modes of inheritance. WMS is characterized by the association of short stature, brachydactyly, joint stiffness, eye anomalies, including microspherophakia and ectopia of the lenses, and, occasionally, heart defects. We investigated the genetic cause of a unique and novel presentation of heart-developed membranes in the supra-pulmonic, supramitral, and subaortic areas, creating stenosis that recurred after their surgical resection in four patients from one extended consanguineous family. The patients also presented ocular findings consistent with Weill-Marchesani syndrome (WMS). We used whole exome sequencing (WES) to identify the causative mutation and report it as a homozygous nucleotide change c. 232T>C causing p. Tyr78His in ADAMTS10. ADAMTS10 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 10) is a member of a family of zinc-dependent extracellular matrix protease family. This is the first report of a mutation in the pro-domain of ADAMTS10. The novel variation replaces a highly evolutionary conserved tyrosine with histidine. This change may affect the secretion or function of ADAMTS10 in the extracellular matrix. The compromise in protease activity may thus cause the unique presentation of the developed membranes in the heart and their recurrence after surgery.

4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674904

RESUMO

Dilated cardiomyopathy (DCM) with left ventricular non-compaction (LVNC) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure, and excessive risk of sudden cardiac death. Using whole-exome sequencing to investigate a possible genetic cause of DCM with LVNC in a consanguineous child, a homozygous nucleotide change c.1532G>A causing p.Arg511His in PHACTR2 was found. The missense change can affect the binding of PHACTR2 to actin by eliminating the hydrogen bonds between them. The amino acid change does not change PHACTR2 localization to the cytoplasm. The patient's fibroblasts showed a decreased globular to fibrillary actin ratio compared to the control fibroblasts. The re-polymerization of fibrillary actin after treatment with cytochalasin D, which disrupts the actin filaments, was slower in the patient's fibroblasts. Finally, the patient's fibroblasts bridged a scar gap slower than the control fibroblasts because of slower and indirect movement. This is the first report of a human variation in this PHACTR family member. The knock-out mouse model presented no significant phenotype. Our data underscore the importance of PHACTR2 in regulating the monomeric actin pool, the kinetics of actin polymerization, and cell movement, emphasizing the importance of actin regulation for the normal function of the human heart.


Assuntos
Actinas , Cardiomiopatia Dilatada , Criança , Animais , Camundongos , Humanos , Actinas/genética , Actinas/metabolismo , Cardiomiopatia Dilatada/metabolismo , Citoesqueleto de Actina/metabolismo , Fenótipo , Morte Súbita Cardíaca/etiologia , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética
5.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175943

RESUMO

Familial non-medullary thyroid cancer (FNMTC) is a well-differentiated thyroid cancer (DTC) of follicular cell origin in two or more first-degree relatives. Patients typically demonstrate an autosomal dominant inheritance pattern with incomplete penetrance. While known genes and chromosomal loci account for some FNMTC, the molecular basis for most FNMTC remains elusive. To identify the variation(s) causing FNMTC in an extended consanguineous family consisting of 16 papillary thyroid carcinoma (PTC) cases, we performed whole exome sequence (WES) analysis of six family patients. We demonstrated an association of ARHGEF28, FBXW10, and SLC47A1 genes with FNMTC. The variations in these genes may affect the structures of their encoded proteins and, thus, their function. The most promising causative gene is ARHGEF28, which has high expression in the thyroid, and its protein-protein interactions (PPIs) suggest predisposition of PTC through ARHGEF28-SQSTM1-TP53 or ARHGEF28-PTCSC2-FOXE1-TP53 associations. Using DNA from a patient's thyroid malignant tissue, we analyzed the possible cooperation of somatic variations with these genes. We revealed two somatic heterozygote variations in XRCC1 and HRAS genes known to implicate thyroid cancer. Thus, the predisposition by the germline variations and a second hit by somatic variations could lead to the progression to PTC.


Assuntos
Síndromes Neoplásicas Hereditárias , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Consanguinidade , Predisposição Genética para Doença , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
6.
Am J Med Genet A ; 188(12): 3463-3468, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111846

RESUMO

Congenital insensitivity to pain (CIP) is a group of rare genetic disorders with a common characteristic of absent sensation to nociceptive pain. Here we present a series of six patients; three had a novel variant in the PRDM12 gene (group A), and three had a missense variant in the SCN9A gene (group B). We compared the ocular manifestations between the two groups. Records of these patients from 2009 through 2018 were reviewed. The retrieved data included demographics, genetic analysis results, ocular history and ophthalmic findings including visual acuity, corneal sensitivity, tear production, ocular surface findings, cycloplegic refraction, and fundoscopy. We found that patients with PRDM12 variant had more severe manifestations of ocular surface disease, with more prevalent corneal opacities and worse visual acuity, compared to patients with SCN9A variant.


Assuntos
Proteínas de Transporte , Opacidade da Córnea , Canal de Sódio Disparado por Voltagem NAV1.7 , Proteínas do Tecido Nervoso , Insensibilidade Congênita à Dor , Humanos , Proteínas de Transporte/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Proteínas do Tecido Nervoso/genética , Dor , Insensibilidade Congênita à Dor/genética
7.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077014

RESUMO

Dedicator of cytokinesis 10 (Dock10) is a guanine nucleotide exchange factor for Cdc42 and Rac1 that regulates the JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) signaling cascades. In this study, we characterized the roles of Dock10 in the myocardium. In vitro: we ablated Dock10 in neonatal mouse floxed Dock10 cardiomyocytes (NMCMs) and cardiofibroblasts (NMCFs) by transduction with an adenovirus expressing Cre-recombinase. In vivo, we studied mice in which the Dock10 gene was constitutively and globally deleted (Dock10 KO) and mice with cardiac myocyte-specific Dock10 KO (Dock10 CKO) at baseline and in response to two weeks of Angiotensin II (Ang II) infusion. In vitro, Dock10 ablation differentially inhibited the α-adrenergic stimulation of p38 and JNK in NMCM and NMCF, respectively. In vivo, the stimulation of both signaling pathways was markedly attenuated in the heart. The Dock10 KO mice had normal body weight and cardiac size. However, echocardiography revealed mildly reduced systolic function, and IonOptix recordings demonstrated reduced contractility and elevated diastolic calcium levels in isolated cardiomyocytes. Remarkably, Dock10 KO, but not Dock10 CKO, exaggerated the pathological response to Ang II infusion. These data suggest that Dock10 regulates cardiac stress-related signaling. Although Dock10 can regulate MAPK signaling in both cardiomyocytes and cardiofibroblasts, the inhibition of pathological cardiac remodeling is not apparently due to the Dock10 signaling in the cardiomyocyte.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Miócitos Cardíacos , Proteínas Quinases p38 Ativadas por Mitógeno , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Am J Med Genet A ; 185(4): 1033-1038, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438832

RESUMO

Aldosterone synthase deficiency (ASD) is a rare potentially life-threatening genetic disorder that usually presents during infancy due to pathogenic variants in the CYP11B2 gene. Knowledge about CYP11B2 variants in the Arab population is scarce. Here, we present and analyze five Palestinian patients and their different novel pathogenic variants. Data on clinical presentation, electrolytes, plasma renin activity, and steroid hormone levels of five patients diagnosed with ASD were summarized. Sequencing of the CYP11B2 gene exons was followed by evolutionary conservation analysis and structural modeling of the variants. All patients were from highly consanguineous Palestinian families. The patients presented at 1-4 months of age with recurrent vomiting, poor weight gain, hyponatremia, hyperkalemia, and low aldosterone levels. Genetic analysis of the CYP11B2 gene revealed three homozygous pathogenic variants: p.Ser344Profs*9, p.G452W in two patients from an extended family, and p.Q338stop. A previously described pathogenic variant was found in one patient: p.G288S. We described four different CYP11B2 gene pathogenic variants in a relatively small population. Our findings may contribute to the future early diagnosis and therapy for patients with ASD among Arab patients who present with failure to thrive and compatible electrolyte disturbances.


Assuntos
Citocromo P-450 CYP11B2/genética , Vômito/genética , Aldosterona/sangue , Árabes/genética , Citocromo P-450 CYP11B2/sangue , Feminino , Heterogeneidade Genética , Humanos , Hiperpotassemia/epidemiologia , Hiperpotassemia/genética , Hiperpotassemia/patologia , Hiponatremia/epidemiologia , Hiponatremia/genética , Hiponatremia/patologia , Lactente , Recém-Nascido , Masculino , Vômito/epidemiologia , Vômito/patologia , Aumento de Peso/genética , Aumento de Peso/fisiologia
9.
J Med Genet ; 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503832

RESUMO

BACKGROUND: Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS: We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS: A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION: This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.

10.
J Med Genet ; 56(4): 228-235, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518548

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure and excessive risk of sudden cardiac death. Around half of DCM cases are idiopathic, and genetic factors seem to play an important role. AIM: We investigated a possible genetic cause of DCM in two consanguineous children from a Bedouin family. METHODS AND RESULTS: Using exome sequencing and searching for rare homozygous variations, we identified a nucleotide change in the donor splice consensus sequence of exon 7 in CAP2 as the causative mutation. Using patient-derived fibroblasts, we demonstrated that the mutation causes skipping of exons 6 and 7. The resulting protein is missing 64 amino acids in its N-CAP domain that should prevent its correct folding. CAP2 protein level was markedly reduced without notable compensation by the homolog CAP1. However, ß-actin mRNA was elevated as demonstrated by real-time qPCR. In agreement with the essential role of CAP2 in actin filament polymerization, we demonstrate that the mutation affects the kinetics of repolymerization of actin in patient fibroblasts. CONCLUSIONS: This is the first report of a recessive deleterious mutation in CAP2 and its association with DCM in humans. The clinical phenotype recapitulates the damaging effects on the heart observed in Cap2 knockout mice including DCM and cardiac conduction disease, but not the other effects on growth, viability, wound healing and eye development. Our data underscore the importance of the proper kinetics of actin polymerization for normal function of the human heart.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatia Dilatada/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Mutação , Taquicardia Supraventricular/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Alelos , Sequência de Aminoácidos , Cardiomiopatia Dilatada/diagnóstico , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Fibroblastos , Homozigoto , Humanos , Masculino , Proteínas de Membrana/química , Modelos Moleculares , Linhagem , Splicing de RNA , Relação Estrutura-Atividade , Taquicardia Supraventricular/diagnóstico
11.
J Med Genet ; 54(9): 633-639, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28536242

RESUMO

BACKGROUND: Azoospermia is diagnosed when sperm cells are completely absent in the ejaculate even after centrifugation. It is identified in approximately 1% of all men and in 10%-20% of infertile males. Non-obstructive azoospermia (NOA) is characterised by the absence of sperm due to either a Sertoli cell-only pattern, maturation arrest, hypospermatogenesis or mixed patterns. NOA is a severe form of male infertility, with limited treatment options and low fertility success rates. In the majority of patients, the cause for NOA is not known and mutations in only a few genes were shown to be causative. AIM: We investigated the cause of maturation arrest in five azoospermic infertile men of a large consanguineous Bedouin family. METHODS AND RESULTS: Using whole genome genotyping and exome sequencing we identified a 4 bp deletion frameshift mutation in TDRD9 as the causative mutation with a Lod Score of 3.42. We demonstrate that the mutation results in a frameshift as well as exon skipping. Immunofluorescent staining with anti-TDRD9 antibody directed towards the N terminus demonstrated the presence of the protein in testicular biopsies of patients with an intracellular distribution comparable to a control biopsy. The mutation does not cause female infertility. CONCLUSION: This is the first report of a recessive deleterious mutation in TDRD9 in humans. The clinical phenotype recapitulates that observed in the Tdrd9 knockout mice where this gene was demonstrated to participate in long interspersed element-1 retrotransposon silencing. If this function is preserved in human, our data underscore the importance of maintaining DNA stability in the human male germ line.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Mutação da Fase de Leitura , Azoospermia/patologia , DNA Helicases/análise , DNA Helicases/química , Genes Recessivos , Humanos , Masculino , Fenótipo , Domínios Proteicos , Splicing de RNA , Testículo/química , Testículo/patologia
12.
PLoS Genet ; 11(8): e1005388, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247364

RESUMO

Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.


Assuntos
Metiltransferases/fisiologia , Animais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Deleção Cromossômica , Retroalimentação Sensorial , Feminino , Masculino , Metilação , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Processamento de Proteína Pós-Traducional
13.
Hum Mol Genet ; 24(25): 7227-40, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26464484

RESUMO

Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death. Another myocardial abnormality often linked to gene mutations is left ventricular noncompaction (LVNC) characterized by a typical diffuse spongy appearance of the left ventricle. Here, we describe a large Bedouin family presenting with a severe recessive DCM and LVNC. Homozygosity mapping and exome sequencing identified a single gene variant that segregated as expected and was neither reported in databases nor in Bedouin population controls. The PLEKHM2 cDNA2156_2157delAG variant causes the frameshift p.Lys645AlafsTer12 and/or the skipping of exon 11 that results in deletion of 30 highly conserved amino acids. PLEKHM2 is known to interact with several Rabs and with kinesin-1, affecting endosomal trafficking. Accordingly, patients' primary fibroblasts exhibited abnormal subcellular distribution of endosomes marked by Rab5, Rab7 and Rab9, as well as the Golgi apparatus. In addition, lysosomes appeared to be concentrated in the perinuclear region, and autophagy flux was impaired. Transfection of wild-type PLEKHM2 cDNA into patient's fibroblasts corrected the subcellular distribution of the lysosomes, supporting the causal effect of PLEKHM2 mutation. PLEKHM2 joins LAMP-2 and BAG3 as a disease gene altering autophagy resulting in an isolated cardiac phenotype. The association of PLEKHM2 mutation with DCM and LVNC supports the importance of autophagy for normal cardiac function.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Adolescente , Autofagia/genética , Autofagia/fisiologia , Cardiomiopatia Dilatada/genética , Criança , Feminino , Genótipo , Humanos , Masculino , Mutação/genética
14.
Hum Mutat ; 37(8): 727-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060491

RESUMO

We investigated the cause of situs inversus totalis (SIT) in two siblings from a consanguineous family. Genotyping and whole-exome analysis revealed a homozygous change in NME7, resulting in deletion of an exon causing an in-frame deletion of 34 amino acids located in the second NDK domain of the protein and segregated with the defective lateralization in the family. NME7 is an important developmental gene, and NME7 protein is a component of the γ-tubulin ring complex. This mutation is predicted to affect the interaction of NME7 protein with this complex as it deletes the amino acids crucial for the binding. SIT associated with homozygous deletion in our patients is in line with Nme7(-/-) mutant mice phenotypes consisting of congenital hydrocephalus and SIT, indicating a novel human laterality patterning role for NME7. Further cases are required to elaborate the full human phenotype associated with NME7 mutations.


Assuntos
Núcleosídeo-Difosfato Quinase/genética , Deleção de Sequência , Situs Inversus/genética , Sequência de Aminoácidos , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/metabolismo , Linhagem , Domínios Proteicos
15.
J Physiol ; 593(24): 5299-312, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26486891

RESUMO

KEY POINTS: Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT: Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.


Assuntos
Bicarbonatos/metabolismo , Anidrases Carbônicas/metabolismo , Mutação de Sentido Incorreto , Ductos Pancreáticos/metabolismo , Saliva/metabolismo , Glândulas Salivares/metabolismo , Xerostomia/genética , Adolescente , Animais , Anidrases Carbônicas/genética , Células Cultivadas , Criança , Antiportadores de Cloreto-Bicarbonato/metabolismo , Glicosilação , Células HEK293 , Células HeLa , Homozigoto , Humanos , Camundongos , Ductos Pancreáticos/citologia , Suco Pancreático/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Glândulas Salivares/citologia , Xerostomia/metabolismo , Xerostomia/patologia , Adulto Jovem
16.
Hum Mol Genet ; 22(25): 5229-36, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23933735

RESUMO

Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.


Assuntos
Doenças Musculares/genética , Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases/genética , Estabilidade de RNA/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Consanguinidade , Exoma/genética , Ácidos Graxos/metabolismo , Feminino , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Masculino , Doenças Musculares/fisiopatologia , Mutação , Miopatias Congênitas Estruturais/fisiopatologia , Linhagem , Proteínas Tirosina Fosfatases/metabolismo
17.
Am J Med Genet A ; 167A(12): 3139-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26768186

RESUMO

Phosphoglucomutase 1 (PGM1, EC 5.4.2.2) plays a critical role in glucose homeostasis and is also essential for protein N-glycosylation. The main clinical manifestations of PGM1 deficiency (MIM 614921) reported in 19 patients from different ethnic backgrounds include the following: cleft uvula/palate, Pierre Robin sequence, muscle weakness, dilated cardiomyopathy, growth retardation, elevated serum transaminases, hypoglycemia, and various endocrine abnormalities. We report the variable clinical picture of seven patients with PGM1 deficiency from a consanguineous family. Medical records of the patients were reviewed for clinical details and endocrine evaluation. Whole exome sequencing (WES) was performed. Seven patients aged 2-29 years were included, one patient died at 13 years old when getting off the school bus. All patients have an abnormal palatine structure (cleft palate, bifid uvula) and elevated serum transaminases, 4/7 have short stature (<-2 SDS) and one was diagnosed with growth hormone deficiency. Recurrent episodes of ketotic hypoglycemia were present in 6/7 patients. In two patients, hypoglycemic episodes have spontaneously resolved later on. Four out of seven patients have deteriorating adrenal function with abnormally low cortisol and ACTH levels during hypoglycemia and subnormal response of cortisol to low dose ACTH test . Serum electrolytes were within normal range. Hydrocortisone replacement therapy improved, but not entirely eliminated hypoglycemic episodes. WES revealed a previously described homozygous mutation c.112A>T, p.Asn38Tyr in the PGM1 gene. The clinical picture of PGM1 deficiency is variable among patients with the same mutation and genetic background. ACTH deficiency should be considered in any PGM1 deficient patient with hypoglycemia.


Assuntos
Insuficiência Adrenal/genética , Doença de Depósito de Glicogênio/genética , Mutação/genética , Fosfoglucomutase/deficiência , Fosfoglucomutase/genética , Adolescente , Insuficiência Adrenal/diagnóstico , Adulto , Criança , Pré-Escolar , Feminino , Doença de Depósito de Glicogênio/diagnóstico , Humanos , Masculino , Linhagem , Fenótipo , Prognóstico , Adulto Jovem
18.
Am J Hum Genet ; 88(5): 599-607, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21496787

RESUMO

In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the ß strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD.


Assuntos
Dineínas do Axonema/genética , Síndrome de Kartagener/etiologia , Síndrome de Kartagener/metabolismo , Mutação Puntual , Adolescente , Sequência de Aminoácidos , Cílios/genética , Análise Mutacional de DNA , Feminino , Flagelos/genética , Regulação da Expressão Gênica , Homozigoto , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Estrutura Secundária de Proteína , Tubulina (Proteína)/genética
19.
Sci Rep ; 14(1): 14949, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942823

RESUMO

Plekhm2 is a protein regulating endosomal trafficking and lysosomal distribution. We recently linked a recessive inherited mutation in PLEKHM2 to a familial form of dilated cardiomyopathy and left ventricular non-compaction. These patients' primary fibroblasts exhibited abnormal lysosomal distribution and autophagy impairment. We therefore hypothesized that loss of PLEKHM2 impairs cardiac function via autophagy derangement. Here, we characterized the roles of Plekhm2 in the heart using global Plekhm2 knockout (PLK2-KO) mice and cultured cardiac cells. Compared to littermate controls (WT), young PLK2-KO mice exhibited no difference in heart function or autophagy markers but demonstrated higher basal AKT phosphorylation. Older PLK2-KO mice had body and heart growth retardation and increased LC3II protein levels. PLK2-KO mice were more vulnerable to fasting and, interestingly, impaired autophagy was noted in vitro, in Plekhm2-deficient cardiofibroblasts but not in cardiomyocytes. PLK2-KO hearts appeared to be less sensitive to pathological hypertrophy induced by angiotensin-II compared to WT. Our findings suggest a role of Plekhm2 in murine cardiac autophagy. Plekhm2 deficiency impaired autophagy in cardiofibroblasts, but the autophagy in cardiomyocytes is not critically dependent on Plekhm2. The absence of Plekhm2 in mice appears to promote compensatory mechanism(s) enabling the heart to manage angiotensin-II-induced stress without detrimental consequences.


Assuntos
Autofagia , Fibroblastos , Miócitos Cardíacos , Animais , Camundongos , Células Cultivadas , Fibroblastos/metabolismo , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
20.
Am J Hum Genet ; 86(2): 273-8, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137772

RESUMO

Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.


Assuntos
Raquitismo Hipofosfatêmico Familiar/enzimologia , Raquitismo Hipofosfatêmico Familiar/genética , Inativação Gênica , Genes Recessivos/genética , Doenças Genéticas Ligadas ao Cromossomo X , Predisposição Genética para Doença , Mutação/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Fator de Crescimento de Fibroblastos 23 , Humanos , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Polimorfismo de Nucleotídeo Único/genética , Pirofosfatases/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA