Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 40(3): 433-43, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21070969

RESUMO

WD40-repeat ß-propellers are found in a wide range of proteins involved in distinct biological activities. We define a large subset of WD40 ß-propellers as a class of ubiquitin-binding domains. Using the ß-propeller from Doa1/Ufd3 as a paradigm, we find the conserved top surface of the Doa1 ß-propeller binds the hydrophobic patch of ubiquitin centered on residues I44, L8, and V70. Mutations that disrupt ubiquitin binding abrogate Doa1 function, demonstrating the importance of this interaction. We further demonstrate that WD40 ß-propellers from a functionally diverse set of proteins bind ubiquitin in a similar fashion. This set includes members of the F box family of SCF ubiquitin E3 ligase adaptors. Using mutants defective in binding, we find that ubiquitin interaction by the F box protein Cdc4 promotes its autoubiquitination and turnover. Collectively, our results reveal a molecular mechanism that may account for how ubiquitin controls a broad spectrum of cellular activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas F-Box/metabolismo , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Proteínas F-Box/química , Proteína 7 com Repetições F-Box-WD , Humanos , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Propriedades de Superfície , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
J Biol Chem ; 285(1): 365-72, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19887378

RESUMO

PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr(805), implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1Delta null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1Delta null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/química , Proteínas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Saccharomyces cerevisiae/citologia , Alinhamento de Sequência , Proteína com Valosina
3.
J Cell Biol ; 168(3): 359-64, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15684027

RESUMO

The myosin V carboxyl-terminal globular tail domain is essential for the attachment of myosin V to all known cargoes. Previously, the globular tail was viewed as a single, functional entity. Here, we show that the globular tail of the yeast myosin Va homologue, Myo2p, contains two structural subdomains that have distinct functions, namely, vacuole-specific and secretory vesicle-specific movement. Biochemical and genetic analyses demonstrate that subdomain I tightly associates with subdomain II, and that the interaction does not require additional proteins. Importantly, although neither subdomain alone is functional, simultaneous expression of the separate subdomains produces a functional complex in vivo. Our results suggest a model whereby intramolecular interactions between the globular tail subdomains help to coordinate the transport of multiple distinct cargoes by myosin V.


Assuntos
Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico/fisiologia , Vesículas Citoplasmáticas/metabolismo , Escherichia coli/genética , Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Transfecção , Tripsina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Cell Rep ; 17(1): 303-315, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681439

RESUMO

We adapted the yeast 2-hybrid assay to simultaneously uncover multiple transient protein interactions within a single screen by using a strategy termed DEEPN (dynamic enrichment for evaluation of protein networks). This approach incorporates high-throughput DNA sequencing and computation to follow competition among a plasmid population encoding interacting partners. To demonstrate the capacity of DEEPN, we identify a wide range of ubiquitin-binding proteins, including interactors that we verify biochemically. To demonstrate the specificity of DEEPN, we show that DEEPN allows simultaneous comparison of candidate interactors across multiple bait proteins, allowing differential interactions to be identified. This feature was used to identify interactors that distinguish between GTP- and GDP-bound conformations of Rab5.


Assuntos
Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Plasmídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Software , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
5.
Dev Cell ; 25(5): 520-33, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23726974

RESUMO

Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargoes. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargoes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clatrina/metabolismo , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Modelos Moleculares , Mutagênese , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética
6.
Structure ; 20(3): 383-5, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22404994

RESUMO

The ESCRTs play multiple roles within the cell, including degradation of ubiquitinated membrane proteins by sorting them into multivesicular bodies (MVBs). Two recent studies provide structural and functional insights into how the newly identified ESCRT-I component UBAP1 dedicates ESCRT-I function for sorting ubiquitinated proteins at the MVB (Agromayor et al., 2012 [this issue of Structure]; Stefani et al., 2011).

7.
J Biol Chem ; 283(31): 21599-611, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508771

RESUMO

Ubiquitin (Ub) is a sorting signal that targets integral membrane proteins to the interior of the vacuole/lysosome by directing them into lumenal vesicles of multivesicular bodies (MVBs). The Vps27-Hse1 complex, which is homologous to the Hrs-STAM complex in mammalian cells, serves as a Ub-sorting receptor at the surface of early endosomes. We have found that Hse1 interacts with Doa1/Ufd3. Doa1 is known to interact with Cdc48/p97 and Ub and is required for maintaining Ub levels. We find that the Hse1 Src homology 3 domain binds directly to the central PFU domain of Doa1. Mutations in Doa1 that block Hse1 binding but not Ub binding do not alter Ub levels but do result in the missorting of the MVB cargo GFP-Cps1. Loss of Doa1 also causes a synthetic growth defect when combined with loss of Vps27. Unlike the loss of Doa1 alone, the doa1Delta vps27Delta double mutant phenotype is not suppressed by Ub overexpression, demonstrating that the effect is not due to indirect consequence of lowered Ub levels. Loss of Doa1 results in a defect in the accumulation of GFP-Ub within yeast vacuoles, implying that there is a reduction in the flux of ubiquitinated membrane proteins through the MVB pathway. This defect was also reflected by an inability to properly sort Vph1-GFP-Ub, a modified subunit of the multiprotein vacuolar ATPase complex, which carries an in-frame fusion of Ub as an MVB sorting signal. These results reveal novel roles for Doa1 in helping to process ubiquitinated membrane proteins for sorting into MVBs.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Ubiquitina/química , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cromatografia de Afinidade/métodos , Endossomos/metabolismo , Epitopos/química , Glutationa/metabolismo , Microscopia de Fluorescência/métodos , Mutação , Fenótipo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sefarose/química , Domínios de Homologia de src
8.
EMBO J ; 25(4): 693-700, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16437158

RESUMO

Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 A of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly conserved regions distributed on the surface of the tail. These are candidate attachment sites for cargo-specific receptors. Indeed, we identified a region of five conserved surface residues that are solely required for vacuole inheritance. Likewise, we identified a region of five conserved surface residues that are required for secretory vesicle movement, but not vacuole movement. These two regions are at opposite ends of the oblong-shaped cargo-binding domain, and moreover are offset by 180 degrees. The fact that the cargo-binding areas are distant from each other and simultaneously exposed on the surface of the globular tail suggests that major targets for the regulation of cargo attachment are organelle-specific myosin V receptors.


Assuntos
Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Biológico Ativo/fisiologia , Cristalografia por Raios X , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo
9.
Eukaryot Cell ; 4(4): 787-98, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15821138

RESUMO

Class V myosins move diverse intracellular cargoes, which attach via interaction of cargo-specific proteins to the myosin V globular tail. The globular tail of the yeast myosin V, Myo2p, contains two structural and functional subdomains. Subdomain I binds to the vacuole-specific protein, Vac17p, while subdomain II likely binds to an as yet unidentified secretory vesicle-specific protein. All functions of Myo2p require the tight association of subdomains I and II, which suggests that binding of a cargo to one subdomain may inhibit cargo-binding to a second subdomain. Thus, two types of mutations are predicted to specifically affect a subset of Myo2p cargoes: first are mutations within a cargo-specific binding region; second are mutations that mimic the inhibited conformation of one of the subdomains. Here we analyze a point mutation in subdomain I, myo2-2(G1248D), which is likely to be this latter type of mutation. myo2-2 has no effect on secretory vesicle movement. The secretory vesicle binding site is in subdomain II. However, myo2-2 is impaired in several Myo2p-related functions. While subdomains I and II of myo2-2p tightly associate, there are measurable differences in the conformation of its globular tail. Based solely on the ability to restore vacuole inheritance, a set of intragenic suppressors of myo2-2 were identified. All suppressor mutations reside in subdomain I. Moreover, subdomain I and II interactions occurred in all suppressors, demonstrating the importance of subdomain I and II association for Myo2p function. Furthermore, 3 of the 10 suppressors globally restored all tested defects in myo2-2. This large proportion of global suppressors strongly suggests that myo2-2(G1248) causes a conformational change in subdomain I that simultaneously affects multiple cargoes.


Assuntos
Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Mutação Puntual , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vesículas Secretórias/metabolismo , Sítios de Ligação , Genes Supressores , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Supressão Genética , Técnicas do Sistema de Duplo-Híbrido , Vacúolos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA