Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Allergy Immunol ; 35(5): e14132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727626

RESUMO

Tree nut allergy is a lifelong and potentially life-threatening condition. The standard of care is strictly avoiding the culprit nut and treating accidental reactions symptomatically. To evaluate potential therapeutic options for desensitizing patients with IgE-mediated tree nut allergy, we systematically searched three bibliographic databases for studies published until January 2024. We looked for active treatments of IgE-mediated allergy to tree nuts (walnut, hazelnut, pistachio, cashew, almond, pecan, macadamia nut, and brazil nut). We focused on allergen-specific immunotherapy (AIT) using oral (OIT), sublingual (SLIT), epicutaneous (EPIT), or subcutaneous (SCIT) delivery, or other disease-modifying treatments. We found 19 studies that met our criteria: 3 studies investigated sublingual immunotherapy, 5 studied oral immunotherapy to a single tree nut, and 6 used multi-food oral immunotherapy with or without omalizumab. The remaining studies investigated the effectiveness of monoclonal antibodies or IgE-immunoadsorption in multi-food allergic patients, including patients with tree nut allergy. The heterogeneity of the studies prevented pooling and meta-analysis. Oral immunotherapy, single or multi-nut, with or without omalizumab, was the most studied approach and appears effective in conferring protection from accidental exposures. Omalizumab monotherapy is the only approved alternative management for reducing allergic reactions that may occur with accidental exposure.


Assuntos
Dessensibilização Imunológica , Imunoglobulina E , Hipersensibilidade a Noz , Humanos , Hipersensibilidade a Noz/imunologia , Hipersensibilidade a Noz/terapia , Imunoglobulina E/imunologia , Dessensibilização Imunológica/métodos , Alérgenos/imunologia , Nozes/imunologia , Criança , Omalizumab/uso terapêutico
2.
Pulm Ther ; 10(2): 171-182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814533

RESUMO

The asthma pandemic imposes a huge burden on patients and health systems in both developed and developing countries. Despite available treatments, symptom control is generally suboptimal, and hospitalizations and deaths remain at unacceptably high levels. A pivotal aspect of asthma that warrants further exploration is the influence of the respiratory microbiome and virome in modulating disease activity. A plethora of studies report that the respiratory microbiome is characteristically dysbiotic in asthma. In addition, our data suggest that dysbiosis is also observed on the respiratory virome, partly characterized by the reduced abundance of bacteriophages (phages). Even though phages can naturally infect and control their bacterial prey, phage therapy has been grossly neglected in the Western world, although more recently it is more widely used as a novel tool against bacterial infections. However, it has never been used for tackling microbiome dysbiosis in human non-communicable diseases. This review provides an up-to-date understanding of the microbiome and virome's role within the airways in relation to asthma morbidity. It also advances the rationale and hypothesis for the CURE project. Specifically, the CURE project suggests that managing the respiratory microbiome through phage therapy is viable and may result in restoring eubiosis within the asthmatic airway. This entails controlling immune dysregulation and the clinical manifestation of the disease. To accomplish this goal, it is crucial to predict the effects of introducing specific phage mixtures into the intricate ecology of the airways and devise suitable interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA