Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 1186, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049762

RESUMO

BACKGROUND: Less than half of unselected metastatic cancer patients benefit from the immune checkpoint inhibitor (ICI) therapy. Systemic cancer-related inflammation may influence the efficacy of ICIs and thus, systemic inflammatory markers could have prognostic and/or predictive potential in ICI therapy. Here, we aimed to identify a combination of inflammation-related laboratory parameters to establish a practical prognostic risk model for the pretreatment evaluation of a response and survival of ICI-treated patients with different types of metastatic cancers. METHODS: The study-cohort consisted of a real-world patient population receiving ICIs for metastatic cancers of different origins (n = 158). Laboratory parameters determined before the initiation of the ICI treatment were retrospectively collected. Six inflammation-related parameters i.e., elevated values of neutrophils, platelets, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and lactate dehydrogenase (LDH), and the presence of anemia, were each scored with one point, giving 0-6 risk points for each patient. The patients with information of all these six parameters (n = 109) were then stratified into low-risk (0-3 points) and high-risk (4-6 points) groups. The overall response rate (ORR), overall survival (OS), and progression-free survival (PFS) according to the risk scores were determined. RESULTS: The risk model was strongly associated with the outcome of the patients. The ORR to ICI treatment in the high-risk group was 30.3% in comparison to 53.9% in the low-risk group (p = 0.023). The medians for OS were 10.0 months and 27.3 months, respectively (p < 0.001), and the corresponding medians for PFS were 3.9 months and 6.3 months (p = 0.002). The risk group remained as a significant prognostic factor for both OS (HR 3.04, 95% CI 1.64-5.64, p < 0.001) and PFS (HR 1.79, 95% CI 1.04-3.06, p = 0.035) in the Cox multivariate analyses. CONCLUSIONS: We propose a readily feasible, practical risk model consisted of six inflammation-related laboratory parameters as a tool for outcome prediction in metastatic cancer patients treated with ICIs. The risk model was strongly associated with the outcome of the patients in terms of all the evaluated indicators i.e., ORR, OS and PFS. Yet, further studies are needed to validate the risk model.


Assuntos
Segunda Neoplasia Primária , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Prognóstico , Estudos Retrospectivos , Neoplasias/tratamento farmacológico , Inflamação , Fatores de Risco
2.
BMC Cancer ; 21(1): 641, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051744

RESUMO

BACKGROUND: FoxP3+ Regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) participate in the formation of an immunosuppressive tumor microenvironment (TME) in malignant cutaneous melanoma (CM). Recent studies have reported that IDO expression correlates with poor prognosis and greater Breslow's depth, but results concerning the role of FoxP3+ Tregs in CM have been controversial. Furthermore, the correlation between IDO and Tregs has not been substantially studied in CM, although IDO is known to be an important regulator of Tregs activity. METHODS: We investigated the associations of FoxP3+ Tregs, IDO+ tumor cells and IDO+ stromal immune cells with tumor stage, prognostic factors and survival in CM. FoxP3 and IDO were immunohistochemically stained from 29 benign and 29 dysplastic nevi, 18 in situ -melanomas, 48 superficial and 62 deep melanomas and 67 lymph node metastases (LNMs) of CM. The number of FoxP3+ Tregs and IDO+ stromal immune cells, and the coverage and intensity of IDO+ tumor cells were analysed. RESULTS: The number of FoxP3+ Tregs and IDO+ stromal immune cells were significantly higher in malignant melanomas compared with benign lesions. The increased expression of IDO in melanoma cells was associated with poor prognostic factors, such as recurrence, nodular growth pattern and increased mitotic count. Furthermore, the expression of IDO in melanoma cells was associated with reduced recurrence-free survival. We further showed that there was a positive correlation between IDO+ tumor cells and FoxP3+ Tregs. CONCLUSIONS: These results indicate that IDO is strongly involved in melanoma progression. FoxP3+ Tregs also seems to contribute to the immunosuppressive TME in CM, but their significance in melanoma progression remains unclear. The positive association of FoxP3+ Tregs with IDO+ melanoma cells, but not with IDO+ stromal immune cells, indicates a complex interaction between IDO and Tregs in CM, which demands further studies.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Melanoma/imunologia , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Progressão da Doença , Intervalo Livre de Doença , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Melanoma/diagnóstico , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Prognóstico , Estudos Retrospectivos , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Adulto Jovem , Melanoma Maligno Cutâneo
3.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820036

RESUMO

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Assuntos
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronan Sintases/genética , Melanoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuronatos/genética , Transdução de Sinais/genética
4.
Biol Proced Online ; 22: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190011

RESUMO

BACKGROUND: Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. RESULTS: Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. CONCLUSIONS: Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.

5.
J Oral Pathol Med ; 48(8): 735-744, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228209

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a chronic T-cell-mediated inflammatory disease, which is associated with increased risk of developing oral squamous cell carcinoma. Epithelial-to-mesenchymal transition is a physiological phenomenon occurring during growth and organogenesis, but it has also an important role in tumorigenesis. In the present work, we studied the expression of known epithelial-to-mesenchymal transition markers in oral lichen planus. METHODS: In total, 54 oral lichen planus and 22 control samples were analyzed for epithelial-to-mesenchymal transition markers. Samples were immunohistochemically stained for claudin-1, claudin-4 and claudin-7, cadherin-1 (E-cadherin), Twist-related protein 1 (TWIST1) and zinc finger E-box-binding homeobox 1 (ZEB1). RESULTS: The expression of claudin-1, claudin-4 and E-cadherin was significantly weaker in oral lichen planus epithelium compared to controls (P < 0.001). The quantity of claudin-7-expressing cells (P < 0.001) and claudin-7 staining intensity (P < 0.05) in the stroma was greater in lichen planus than in control samples. TWIST1 and ZEB1 stainings were negative in the epithelium in both lichen planus and controls. The number of TWIST1-expressing cells in the stroma was higher in lichen planus than in controls (P < 0.001). There was a statistically significant difference in ZEB1 staining intensity in the stroma between lichen planus and control samples (P < 0.05). CONCLUSIONS: The data indicate that the expression of claudin-1, claudin-4 and E-cadherin is decreased in oral lichen planus. This may lead to disturbance in epithelial tight junctions, cell-cell connections and epithelial permeability, contributing to oral lichen planus pathogenesis. Based on the present study, the role of TWIST1 and ZEB1 in oral lichen planus remains unclear.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal , Líquen Plano Bucal/genética , Neoplasias Bucais/genética , Antígenos CD/genética , Caderinas/genética , Estudos de Casos e Controles , Claudina-1/metabolismo , Claudina-4/metabolismo , Claudinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
6.
Biochem J ; 475(10): 1755-1772, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626161

RESUMO

Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epiderme/enzimologia , Hialuronan Sintases/metabolismo , Queratinócitos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Epiderme/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Receptores Purinérgicos P2Y2/genética , Transdução de Sinais
7.
BMC Med Educ ; 19(1): 273, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331319

RESUMO

BACKGROUND: Human morphology is a critical component of dental and medical graduate training. Innovations in basic science teaching methods are needed to keep up with an ever-changing landscape of technology. The purpose of this study was to investigate whether students in a medical and dental histology course would have better grades if they used gaming software Kahoot® and whether gamification effects on learning and enjoyment. METHODS: In an effort to both evoke students' interest and expand their skill retention, an online competition using Kahoot® was implemented for first-year students in 2018 (n = 215) at the University of Eastern Finland. Additionally, closed (160/215) or open-ended (41/215) feedback questions were collected and analyzed. RESULTS: The Kahoot® gamification program was successful and resulted in learning gains. The overall participant satisfaction using Kahoot® was high, with students (124/160) indicating that gamification increased their motivation to learn. The gaming approach seemed to enable the students to overcome individual difficulties (139/160) and to set up collaboration (107/160); furthermore, gamification promoted interest (109/160), and the respondents found the immediate feedback from senior professionals to be positive (146/160). In the open-ended survey, the students (23/41) viewed collaborative team- and gamification-based learning positively. CONCLUSION: This study lends support to the use of gamification in the teaching of histology and may provide a foundation for designing a gamification-integrated curriculum across healthcare disciplines.


Assuntos
Desempenho Acadêmico , Jogos Experimentais , Histologia/educação , Internet , Ensino , Currículo , Finlândia , Humanos , Estudantes de Medicina
8.
J Biol Chem ; 292(12): 4861-4872, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28188289

RESUMO

The release of nucleotides into extracellular space is triggered by insults like wounding and ultraviolet radiation, resulting in stimulatory or inhibitory signals via plasma membrane nucleotide receptors. As similar insults are known to activate hyaluronan synthesis we explored the possibility that extracellular UTP or its breakdown products UDP and UMP act as mediators for hyaluronan synthase (HAS) activation in human epidermal keratinocytes. UTP increased hyaluronan both in the pericellular matrix and in the culture medium of HaCaT cells. 10-100 µm UTP strongly up-regulated HAS2 expression, although the other hyaluronan synthases (HAS1, HAS3) and hyaluronidases (HYAL1, HYAL2) were not affected. The HAS2 response was rapid and transient, with the maximum stimulation at 1.5 h. UDP exerted a similar effect, but higher concentrations were required for the response, and UMP showed no stimulation at all. Specific siRNAs against the UTP receptor P2Y2, and inhibitors of UDP receptors P2Y6 and P2Y14, indicated that the response to UTP was mediated mainly through P2Y2 and to a lesser extent via UDP receptors. UTP increased the phosphorylation of p38, ERK, CREB, and Ser-727 of STAT3 and induced nuclear translocation of pCaMKII. Inhibitors of PKC, p38, ERK, CaMKII, STAT3, and CREB partially blocked the activation of HAS2 expression, confirming the involvement of these pathways in the UTP-induced HAS2 response. The present data reveal a selective up-regulation of HAS2 expression by extracellular UTP, which is likely to contribute to the previously reported rapid activation of hyaluronan metabolism in response to tissue trauma or ultraviolet radiation.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Queratinócitos/metabolismo , Uridina Trifosfato/metabolismo , Linhagem Celular , Glucuronosiltransferase/genética , Humanos , Hialuronan Sintases , Regulação para Cima
9.
BMC Cancer ; 18(1): 664, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914429

RESUMO

BACKGROUND: Diffusely infiltrating astrocytomas originate from astrocytic glial cells or their precursor cells and are the most common type of brain tumors in adults. In this retrospective study, we investigated the content of hyaluronan, its cell surface receptor, CD44 and the expression of hyaluronan metabolizing enzymes, in these aggressive tumors. Hyaluronan is the main component of extracellular matrix in the brain. In many tumors, aberrant hyaluronan metabolism implicates aggressive disease progression and metastatic potential. METHODS: Our material consisted of 163 diffusely infiltrating astrocytomas (WHO grades II-IV). Tumor samples were processed into tissue microarray (TMA) blocks. The TMA sections were stained for hyaluronan, CD44, hyaluronan synthases 1-3 (HAS1-3) and hyaluronidase 2 (HYAL2). The immunostaining results were compared with χ2 -test or with Kruskal-Wallis test for correlation with clinicopathological parameters and survival analyses were done with Kaplan-Meier log rank test and Cox regression. RESULTS: Hyaluronan and CD44 were strongly expressed in astrocytic gliomas but their expression did not correlate with WHO grade or any other clinicopathological parameters whereas high HAS2 staining intensity was observed in IDH1 negative tumors (p = 0.003). In addition, in non-parametric tests increased HAS2 staining intensity correlated with increased cell proliferation (p = 0.013) and in log rank test with decreased overall survival of patients (p = 0.001). In the Cox regression analysis HAS2 expression turned out to be a significant independent prognostic factor (p = 0.008). CONCLUSIONS: This study indicates that elevated expression of HAS2 is associated with glioma progression and suggests that HAS2 has a prognostic significance in diffusely infiltrating astrocytomas.


Assuntos
Astrocitoma/enzimologia , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/enzimologia , Hialuronan Sintases/biossíntese , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/biossíntese , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos
10.
Cell Mol Life Sci ; 73(16): 3183-204, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883802

RESUMO

Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Acetilglucosamina/metabolismo , Acilação , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Progressão da Doença , Endocitose , Humanos , Hialuronan Sintases , Melanoma/patologia , Transporte Proteico , Pele/patologia , Neoplasias Cutâneas/patologia , Uridina Difosfato N-Acetilglicosamina/metabolismo
11.
BMC Cancer ; 16: 313, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184066

RESUMO

BACKGROUND: Hyaluronan is a large extracellular matrix molecule involved in several biological processes such as proliferation, migration and invasion. In many cancers, hyaluronan synthesis is altered, which implicates disease progression and metastatic potential. We have previously shown that synthesis of hyaluronan and expression of its synthases 1-2 (HAS1-2) decrease in cutaneous melanoma, compared to benign melanocytic lesions. METHODS: In the present study, we compared immunohistological staining results of HAS1 and HAS2 with clinical and histopathological parameters to investigate whether HAS1 or HAS2 has prognostic value in cutaneous melanoma. The specimens consisted of 129 tissue samples including superficial (Breslow ≤ 1 mm) and deep (Breslow > 4 mm) melanomas and lymph node metastases. The differences in immunostainings were analysed with non-parametric Mann-Whitney U test. Associations between immunohistological staining results and clinical parameters were determined with the χ(2) test. Survival between patient groups was compared by the Kaplan-Meier method using log rank test and Cox's regression model was used for multivariate analyses. RESULTS: The expression of HAS1 and HAS2 was decreased in deep melanomas and metastases compared to superficial melanomas. Decreased immunostaining of HAS2 in melanoma cells was significantly associated with several known unfavourable histopathologic prognostic markers like increased mitotic count, absence of tumor infiltrating lymphocytes and the nodular subtype. Furthermore, reduced HAS1 and HAS2 immunostaining in the melanoma cells was associated with increased recurrence of melanoma (p = 0.041 and p = 0.006, respectively) and shortened disease- specific survival (p = 0.013 and p = 0.001, respectively). CONCLUSIONS: This study indicates that reduced expression of HAS1 and HAS2 is associated with melanoma progression and suggests that HAS1 and HAS2 have a prognostic significance in cutaneous melanoma.


Assuntos
Glucuronosiltransferase/metabolismo , Melanoma/enzimologia , Neoplasias Cutâneas/enzimologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Moléculas de Adesão Celular/metabolismo , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Adulto Jovem
12.
Exp Cell Res ; 337(1): 1-15, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26222208

RESUMO

Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.


Assuntos
Adesão Celular , Movimento Celular , Proliferação de Células , Glucuronosiltransferase/metabolismo , Melanoma/enzimologia , Linhagem Celular Tumoral , Forma Celular , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Expressão Gênica , Glucuronosiltransferase/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
13.
Gynecol Oncol ; 137(1): 152-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584766

RESUMO

OBJECTIVE: Hyaluronidases (HYAL1 and HYAL2) are key enzymes in the degradation of hyaluronan, and their expression has been altered in various cancer types. We previously showed that hyaluronan accumulation in endometrial carcinomas was correlated with decreased mRNA expression of the HYAL genes. In this study, we analyzed HYAL1 and HYAL2 protein expressions in normal and precancerous endometrial tissues and in endometrial carcinomas. We also investigated whether the protein levels were associated with clinicopathological factors, invasion, and disease recurrence. METHODS: A total of 343 tissue specimens from normal, atrophic, hypertrophic, and neoplastic endometria were analyzed immunohistochemically for HYAL1 and HYAL2 expressions. The results were correlated with clinicopathological factors, the expression of the epithelial-mesenchymal transition marker, E-cadherin, and disease recurrence. RESULTS: Reduced HYAL1 expression was associated with the progression of endometrial carcinomas towards higher grades and also with large tumor sizes, lymph node metastasis, and lymphovascular invasion. Reduced expression of both HYAL1 and HYAL2 was associated with deep myometrial invasion. HYAL2 expression was primarily constant in neoplastic tissues, but its expression was altered in different phases of the endometrial cycle. In addition, a reduction in HYAL1 expression was associated with the depletion of E-cadherin. In a multivariate analysis, reduced HYAL1 expression was an independent prognostic factor for early disease recurrence (HR 5.13, 95% CI: 1.131-23.270, p=0.034). CONCLUSIONS: This study showed that reduced HYAL1 expression was associated with endometrial carcinoma aggressiveness, which further supported the role of hyaluronan degradation in cancer progression.


Assuntos
Neoplasias do Endométrio/enzimologia , Hialuronoglucosaminidase/biossíntese , Recidiva Local de Neoplasia/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia
14.
J Oral Pathol Med ; 44(6): 401-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25421996

RESUMO

BACKGROUND: Oral lichen planus (OLP) is an immune-mediated mucosal disease of unclear etiology and of unresolved pathogenesis. Hyaluronan (HA) is an extracellular matrix glycosaminoglycan involved in inflammation and tumor progression. However, its presence in OLP has not been reported. We therefore aimed to study the immunohistochemical expression of HA, its receptor CD44, hyaluronan synthases (HAS1-3), and hyaluronidases (HYAL1-2) in OLP. METHODS: The presence of HA, CD44, HAS1-3, and HYAL1-2 was studied by immunohistochemical methods in 55 OLP and 23 control oral mucosal specimens (CTR). The localization, intensity, and differences of the epithelial expression between OLP and CTRs were analyzed. RESULTS: HA and CD44 were found on cell membranes in the epithelial basal and intermediate layers in CTR and OLP specimens. The HA staining intensity was stronger in the basal layer of the epithelium in OLP than in CTRs (P < 0.001). HAS1 (P = 0.001) and HAS2 (P < 0.001) showed stronger staining in the basal and weaker staining in the superficial (P < 0.001) epithelial layers in OLP than in CTRs. The immunostaining of HAS3 was low in both OLP and CTRs. Positive HYAL1 and HYAL2 staining were mainly found in the basal and intermediate epithelial layers, and their intensities were significantly increased in OLP, except HYAL 2 in the intermediate epithelial layer. CONCLUSIONS: HA, HAS1-2, and HYAL1-2 have altered expression in OLP compared to CTRs and may therefore have a role in OLP pathogenesis.


Assuntos
Glucuronosiltransferase/biossíntese , Ácido Hialurônico/biossíntese , Hialuronoglucosaminidase/biossíntese , Líquen Plano Bucal/metabolismo , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/metabolismo , Distribuição de Qui-Quadrado , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Imuno-Histoquímica , Inflamação , Líquen Plano Bucal/enzimologia , Líquen Plano Bucal/patologia , Mucosa Bucal
15.
J Biol Chem ; 288(25): 17999-8012, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23645665

RESUMO

Hyaluronan, a major epidermal extracellular matrix component, responds strongly to different kinds of injuries. This also occurs by UV radiation, but the mechanisms involved are poorly understood. The effects of a single ultraviolet B (UVB) exposure on hyaluronan content and molecular mass, and expression of genes involved in hyaluronan metabolism were defined in monolayer and differentiated, organotypic three-dimensional cultures of rat epidermal keratinocytes. The signals regulating the response were characterized using specific inhibitors and Western blotting. In monolayer cultures, UVB increased hyaluronan synthase Has1 mRNA already 4 h postexposure, with a return to control level by 24 h. In contrast, Has2 and Has3 were persistently elevated from 8 h onward. Silencing of Has2 and especially Has3 decreased the UVB-induced accumulation of hyaluronan. p38 and Ca(2+)/calmodulin-dependent protein kinase II pathways were found to be involved in the UVB-induced up-regulation of Has2 and Has3 expression, respectively, and their inhibition reduced hyaluronan deposition. However, the expressions of the hyaluronan-degrading enzymes Hyal1 and Hyal2 and the hyaluronan receptor Cd44 were also up-regulated by UVB. In organotypic cultures, UVB treatment also resulted in increased expression of both Has and Hyal genes and shifted hyaluronan toward a smaller size range. Histochemical stainings indicated localized losses of hyaluronan in the epidermis. The data show that exposure of keratinocytes to acute, low dose UVB increases hyaluronan synthesis via up-regulation of Has2 and Has3. The simultaneously enhanced catabolism of hyaluronan demonstrates the complexity of the UVB-induced changes. Nevertheless, enhanced hyaluronan metabolism is an important part of the adaptation of keratinocytes to radiation injury.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glucuronosiltransferase/biossíntese , Ácido Hialurônico/biossíntese , Queratinócitos/efeitos da radiação , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular , Relação Dose-Resposta à Radiação , Indução Enzimática/efeitos da radiação , Expressão Gênica/efeitos da radiação , Glucuronosiltransferase/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Isoenzimas/biossíntese , Isoenzimas/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Naftalenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
16.
Exp Cell Res ; 319(13): 2006-2018, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23732660

RESUMO

Many cell types secrete plasma membrane-bound microvesicles, suggested to play an important role in tissue morphogenesis, wound healing, and cancer spreading. However, the mechanisms of their formation have remained largely unknown. It was found that the tips of long microvilli induced in cells by overexpression of hyaluronan synthase 3 (HAS3) were detach into the culture medium as microvesicles. Moreover, several cell types with naturally active hyaluronan synthesis released high numbers of plasma membrane-derived vesicles, and inhibition of hyaluronan synthesis reduced their formation. The vesicles contained HAS, and were covered with a thick hyaluronan coat, a part of which was retained even after purification with high-speed centrifugation. HAS3 overexpressing MDCK cells cultured in a 3-D matrix as epithelial cysts released large amounts of HAS- and hyaluronan-positive vesicles from their basal surfaces into the extracellular matrix. As far as we know, hyaluronan synthesis is one of the first molecular mechanisms shown to stimulate the production of microvesicles. The microvesicles have a potential to deliver the hyaluronan synthase machinery and membrane and cytoplasmic materials to other cells, influencing tissue regeneration, inflammation and tumor progression.


Assuntos
Membrana Celular/metabolismo , Vesículas Revestidas/metabolismo , Ácido Hialurônico/metabolismo , Animais , Técnicas de Cultura de Células , Membrana Celular/ultraestrutura , Células Cultivadas , Cães , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hialuronan Sintases , Ácido Hialurônico/fisiologia , Masculino , Ratos , Ratos Wistar , Transfecção
17.
Sci Rep ; 14(1): 10626, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724670

RESUMO

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Assuntos
Carcinoma de Células Renais , Matriz Extracelular , Regulação Neoplásica da Expressão Gênica , Ácido Hialurônico , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Ácido Hialurônico/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Prognóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transcriptoma , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
18.
Cardiovasc Res ; 120(8): 869-882, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289873

RESUMO

AIMS: Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS: To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION: We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.


Assuntos
Doenças da Aorta , Aterosclerose , Modelos Animais de Doenças , Músculo Liso Vascular , Miócitos de Músculo Liso , Placa Aterosclerótica , Proteínas Ribossômicas , Animais , Feminino , Humanos , Masculino , Camundongos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transcriptoma
19.
Redox Biol ; 69: 103031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184997

RESUMO

The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenocarcinoma de Pulmão/genética , Apoptose/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Mutação
20.
BMC Cancer ; 13: 181, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23560496

RESUMO

BACKGROUND: Hyaluronan is an extracellular matrix glycosaminoglycan involved in invasion, proliferation and metastasis of various types of carcinomas. In many cancers, aberrant hyaluronan expression implicates disease progression and metastatic potential. Melanoma is an aggressive skin cancer. The role of hyaluronan in melanoma progression including benign nevi and lymph node metastases has not been investigated earlier, nor the details of its synthesis and degradation. METHODS: The melanocytic and dysplastic nevi, in situ melanomas, superficially and deeply invasive melanomas and their lymph node metastases were analysed immunohistochemically for the amount of hyaluronan, its cell surface receptor CD44, hyaluronan synthases 1-3 and hyaluronidases 1-2. RESULTS: Hyaluronan content of tumoral cells in deeply invasive melanomas and metastatic lesions was clearly reduced compared to superficial melanomas or benign lesions. Furthermore, hyaluronan content in the stromal cells of benign nevi was higher than in the premalignant or malignant tumors. The immunopositivity of hyaluronidase 2 was significantly increased in the premalignant and malignant lesions indicating its specific role in the degradation of hyaluronan during tumor progression. Similarly, the expression of hyaluronan synthases 1-2 and CD44 receptor was decreased in the metastases compared to the primary melanomas. CONCLUSIONS: These findings suggest that the reciprocal relationship between the degrading and synthesizing enzymes account for the alterations in hyaluronan content during the growth of melanoma. These results provide new information about hyaluronan metabolism in benign, premalignant and malignant melanocytic tumors of the skin.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/genética , Humanos , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Hialuronoglucosaminidase/genética , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Neoplasias Cutâneas/genética , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA