Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(9): 3032-3047, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38940350

RESUMO

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.


Assuntos
Encéfalo , Degeneração Lobar Frontotemporal , Humanos , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Feminino , Idoso , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pessoa de Meia-Idade , Proteínas tau/genética , Proteínas tau/metabolismo , Atrofia/genética , Animais , Evolução Molecular , Expressão Gênica/genética
2.
Ann Neurol ; 94(4): 632-646, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431188

RESUMO

OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.


Assuntos
Demência Frontotemporal , Proteínas tau , Humanos , Estudos Transversais , Proteínas tau/genética , Encéfalo/diagnóstico por imagem , Mutação/genética , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Demência Frontotemporal/genética , Biomarcadores
3.
Am J Geriatr Psychiatry ; 32(9): 1047-1059, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38849218

RESUMO

OBJECTIVE: Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are currently investigated as novel interventions for affective disorders, yet little is known regarding their effects in OA. We investigated the mental health effects and psychological mechanisms of guided psychedelic group experiences in OA and a matched sample of younger adults (YA). METHODS: Using a prospective observational cohort design, we identified 62 OA (age ≥60 years) and 62 matched YA who completed surveys two weeks before, a day, two weeks, four weeks, and six months after a psychedelic group session. Mixed linear regression analyses were used to investigate longitudinal well-being changes, as well as baseline, acute, and post-acute predictors of change. RESULTS: OA showed post-psychedelic well-being improvements similar to matched YA. Among baseline predictors, presence of a lifetime psychiatric diagnosis was associated with greater well-being increases in OA (B = 6.72, p = .016 at the four-week key-endpoint). Compared to YA, acute subjective psychedelic effects were less intense in OA and did not significantly predict prospective well-being changes. However, relational experiences before and after psychedelic sessions emerged as predictors in OA (r(36) = .37,p = 0.025). CONCLUSIONS: Guided psychedelic group sessions enhance well-being in OA in line with prior naturalistic and controlled studies in YA. Interestingly, acute psychedelic effects in OA are attenuated and less predictive of well-being improvements, with relational experiences related to the group setting playing a more prominent role. Our present findings call for further research on the effects of psychedelics in OA.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Alucinógenos/administração & dosagem , Masculino , Feminino , Estudos Prospectivos , Idoso , Pessoa de Meia-Idade , Adulto , Adulto Jovem
4.
Psychophysiology ; 60(4): e14218, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36371680

RESUMO

The outflow of the autonomic nervous system (ANS) is continuous and dynamic, but its functional organization is not well understood. Whether ANS patterns accompany emotions, or arise in basal physiology, remain unsettled questions in the field. Here, we searched for brief ANS patterns amidst continuous, multichannel physiological recordings in 45 healthy older adults. Participants completed an emotional reactivity task in which they viewed video clips that elicited a target emotion (awe, sadness, amusement, disgust, or nurturant love); each video clip was preceded by a pre-trial baseline period and followed by a post-trial recovery period. Participants also sat quietly for a separate 2-min resting period to assess basal physiology. Using principal components analysis and unsupervised clustering algorithms to reduce the second-by-second physiological data during the emotional reactivity task, we uncovered five ANS states. Each ANS state was characterized by a unique constellation of patterned physiological changes that differentiated among the trials of the emotional reactivity task. These ANS states emerged and dissipated over time, with each instance lasting several seconds on average. ANS states with similar structures were also detectable in the resting period but were intermittent and of smaller magnitude. Our results offer new insights into the functional organization of the ANS. By assembling short-lived, patterned changes, the ANS is equipped to generate a wide range of physiological states that accompany emotions and that contribute to the architecture of basal physiology.


Assuntos
Sistema Nervoso Autônomo , Asco , Humanos , Idoso , Sistema Nervoso Autônomo/fisiologia , Emoções/fisiologia , Amor , Tristeza
5.
Neuroimage ; 261: 119526, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914669

RESUMO

The human brain exhibits a diverse yet constrained range of activity states. While these states can be faithfully represented in a low-dimensional latent space, our understanding of the constitutive functional anatomy is still evolving. Here we applied dimensionality reduction to task-free and task fMRI data to address whether latent dimensions reflect intrinsic systems and if so, how these systems may interact to generate different activity states. We find that each dimension represents a dynamic activity gradient, including a primary unipolar sensory-association gradient underlying the global signal. The gradients appear stable across individuals and cognitive states, while recapitulating key functional connectivity properties including anticorrelation, modularity, and regional hubness. We then use dynamical systems modeling to show that gradients causally interact via state-specific coupling parameters to create distinct brain activity patterns. Together, these findings indicate that a set of dynamic, intrinsic spatial gradients interact to determine the repertoire of possible brain activity states.


Assuntos
Encéfalo , Rede Nervosa , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
6.
Hum Brain Mapp ; 42(13): 4134-4143, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-30697878

RESUMO

A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (ß = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Córtex Cerebral , Conectoma/métodos , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/metabolismo , Rede de Modo Padrão/fisiopatologia , Humanos
7.
Cereb Cortex ; 30(10): 5387-5399, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32500143

RESUMO

Each neurodegenerative syndrome reflects a stereotyped pattern of cellular, regional, and large-scale brain network degeneration. In behavioral variant of frontotemporal dementia (bvFTD), a disorder of social-emotional function, von Economo neurons (VENs), and fork cells are among the initial neuronal targets. These large layer 5 projection neurons are concentrated in the anterior cingulate and frontoinsular (FI) cortices, regions that anchor the salience network, a large-scale system linked to social-emotional function. Here, we studied patients with bvFTD, amyotrophic lateral sclerosis (ALS), or both, given that these syndromes share common pathobiological and genetic factors. Our goal was to determine how neuron type-specific TAR DNA-binding protein of 43 kDa (TDP-43) pathobiology relates to atrophy in specific brain structures and to loss of emotional empathy, a cardinal feature of bvFTD. We combined questionnaire-based empathy assessments, in vivo structural MR imaging, and quantitative histopathological data from 16 patients across the bvFTD/ALS spectrum. We show that TDP-43 pathobiology within right FI VENs and fork cells is associated with salience network atrophy spanning insular, medial frontal, and thalamic regions. Gray matter degeneration within these structures mediated loss of emotional empathy, suggesting a chain of influence linking the cellular, regional/network, and behavioral levels in producing signature bvFTD clinical features.


Assuntos
Encéfalo/patologia , Empatia , Demência Frontotemporal/patologia , Demência Frontotemporal/psicologia , Neurônios/patologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/psicologia , Atrofia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia , Testes Neuropsicológicos
8.
Neuroimage ; 207: 116404, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31783114

RESUMO

In mammals, the hippocampus, entorhinal, perirhinal, and parahippocampal cortices (i.e., core regions of the human medial temporal lobes, MTL) are locally interlaced with the adjacent amygdala nuclei at the structural and functional levels. At the global brain level, the human MTL has been described as part of the default mode network and amygdala nuclei as parts of the salience network, with both networks collectively forming a large-scale brain system supporting allostatic-interoceptive functions. We hypothesized (i) that intrinsic functional connectivity of slow activity fluctuations would reveal human MTL subsystems locally extending to the amygdala; and (ii) that these extended local subsystems would be globally embedded in large-scale brain systems supporting allostatic-interoceptive functions. Capitalizing on resting-state fMRI data of three independent samples of cognitively healthy adults (one main and two replication samples: N â€‹= â€‹101, 60, and 29, respectively), we analyzed the functional connectivity of fluctuating ongoing BOLD-activity within and outside the amygdala-MTL in a data-driven way using masked independent component and dual-regression analyses. We found that at the local level, MTL subsystems extend to the amygdala and are functionally organized along the longitudinal amygdala-MTL axis. These subsystems are characterized by consistent involvement of amygdala, hippocampus, and entorhinal cortex, but variable participation of perirhinal and parahippocampal regions. At the global level, amygdala-MTL subsystems selectively connect to salience, thalamic-brainstem, and default mode networks - the major cortical and subcortical components of the allostatic-interoceptive system. These findings provide evidence for integrated amygdala-MTL subsystems in humans, which are embedded within a larger allostatic-interoceptive system.


Assuntos
Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Lobo Temporal/fisiologia
9.
Neuroimage ; 208: 116425, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31805382

RESUMO

The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS contributes to cognitive processes through frontal and parietal connections. Open questions remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS subregions. We studied three independent large samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that displayed both "state" and "trait" characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions were stable over time and related to empathy measures.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Empatia/fisiologia , Funcionamento Psicossocial , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Estudos Transversais , Conjuntos de Dados como Assunto , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Acta Neuropathol ; 137(1): 27-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511086

RESUMO

TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Neurônios/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Neurônios/patologia , Doença de Pick/patologia
12.
BMC Neurol ; 18(1): 163, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285663

RESUMO

BACKGROUND: Neurodegenerative processes in the elderly damage the brain, leading to progressive, incapacitating cognitive, behavioral, and motor dysfunctions which culminate in dementia. Fully manifest dementia is likely to be preceded by the presence of neurological signs, which could serve as early determinants of dementia and predictors of mortality. The aims of this study were to assess the construct validity of a neurological battery assessed among older adults living in Latin America, and to test the association of groups of neurological signs with dementia cross-sectionally, and mortality longitudinally. METHODS: The 10/66 Dementia Research Group collected information on neurological symptoms via the NEUROEX assessment in population based surveys of older adults living in low and middle-income countries. Data from 10,856 adults participating in the baseline assessment of the 10/66 study and living in Cuba, Dominican Republic, Peru, Venezuela and Mexico were analysed. Exploratory and confirmatory analysis were used to explore dimensionality of neurological symptoms. Poisson regression analyses were used to link groups of neurological signs with dementia at baseline. Cox hazard regression models were used to explore the predictive validity of neurological signs with mortality at follow up. RESULTS: Exploratory and confirmatory factor analyses revealed four dimensions of neurological signs, which are associated with lesions of specific brain regions. The identified factors showed consistency with groups of neurological signs such as frontal, cerebellar, extrapyramidal, and more generalized gait disturbance signs. Regression analyses revealed that all groups of neurological signs were positively associated with dementia at baseline and predicted mortality at follow up. CONCLUSIONS: Our findings support the construct and predictive validity of the NEUROEX assessment, linking neurological and gait impairments with dementia at baseline, and with mortality at follow up among older adults living in five Latin American countries.


Assuntos
Demência/diagnóstico , Demência/mortalidade , Exame Neurológico/métodos , Idoso , Feminino , Humanos , América Latina/epidemiologia , Masculino , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Análise de Regressão
13.
Cereb Cortex ; 25(12): 4678-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24996404

RESUMO

Amyloid-ß pathology (Aß) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aß-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aß-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aß-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aß-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aß-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aß-pathology with cognitive impairment in early AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Atenção/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Tiazóis
14.
Brain ; 137(Pt 7): 2052-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24771519

RESUMO

There is striking overlap between the spatial distribution of amyloid-ß pathology in patients with Alzheimer's disease and the spatial distribution of high intrinsic functional connectivity in healthy persons. This overlap suggests a mechanistic link between amyloid-ß and intrinsic connectivity, and indeed there is evidence in patients for the detrimental effects of amyloid-ß plaque accumulation on intrinsic connectivity in areas of high connectivity in heteromodal hubs, and particularly in the default mode network. However, the observed spatial extent of amyloid-ß exceeds these tightly circumscribed areas, suggesting that previous studies may have underestimated the negative impact of amyloid-ß on intrinsic connectivity. We hypothesized that the known positive baseline correlation between patterns of amyloid-ß and intrinsic connectivity may mask the larger extent of the negative effects of amyloid-ß on connectivity. Crucially, a test of this hypothesis requires the within-patient comparison of intrinsic connectivity and amyloid-ß distributions. Here we compared spatial patterns of amyloid-ß-plaques (measured by Pittsburgh compound B positron emission tomography) and intrinsic functional connectivity (measured by resting-state functional magnetic resonance imaging) in patients with prodromal Alzheimer's disease via spatial correlations in intrinsic networks covering fronto-parietal heteromodal cortices. At the global network level, we found that amyloid-ß and intrinsic connectivity patterns were positively correlated in the default mode and several fronto-parietal attention networks, confirming that amyloid-ß aggregates in areas of high intrinsic connectivity on a within-network basis. Further, we saw an internetwork gradient of the magnitude of correlation that depended on network plaque-load. After accounting for this globally positive correlation, local amyloid-ß-plaque concentration in regions of high connectivity co-varied negatively with intrinsic connectivity, indicating that amyloid-ß pathology adversely reduces connectivity anywhere in an affected network as a function of local amyloid-ß-plaque concentration. The local negative association between amyloid-ß and intrinsic connectivity was much more pronounced than conventional group comparisons of intrinsic connectivity would suggest. Our findings indicate that the negative impact of amyloid-ß on intrinsic connectivity in heteromodal networks is underestimated by conventional analyses. Moreover, our results provide first within-patient evidence for correspondent patterns of amyloid-ß and intrinsic connectivity, with the distribution of amyloid-ß pathology following functional connectivity gradients within and across intrinsic networks.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Vias Neurais/patologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Tiazóis
15.
Alzheimers Dement ; 11(5): 475-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25043909

RESUMO

BACKGROUND: The hippocampus (HP) is part of the default mode network (DMN), and both are key targets of Alzheimer's disease (AD). Because of widespread network degeneration, it has been suggested that increasing HP disconnection from the DMN may lead to progressive disinhibition of intra-HP synchronized activity. METHODS: To analyze HP local (i.e., within HP) and global (i.e., within DMN) intrinsic functional connectivity (local/global intrinsic functional connectivity [iFC]), healthy controls and patients with mild cognitive impairment and AD dementia were assessed by spatial high and normal resolution resting-state functional magnetic resonance imaging. RESULTS: Although patients' parietal local-iFC was reduced and positively correlated with reduced global-iFC within the DMN, HP local connectivity was progressively increased and negatively correlated with HP decreased global connectivity. Increased intra-HP connectivity was associated with impaired memory. CONCLUSION: Our result demonstrates a link between increased local and reduced global hippocampal connectivity in AD. Increased intra-HP synchrony may contribute to distinct symptoms such as memory impairment or more speculatively epileptic seizure.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Rede Nervosa/patologia , Vias Neurais/patologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Feminino , Hipocampo/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/irrigação sanguínea , Vias Neurais/irrigação sanguínea , Exame Neurológico , Oxigênio/sangue , Escalas de Graduação Psiquiátrica
16.
Res Sq ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496492

RESUMO

Affective symptoms such as anxiety, low mood, and loneliness are prevalent and highly debilitating symptoms among older adults (OA). Serotonergic psychedelics are novel experimental interventions for affective disorders, yet little is known regarding their effects in OA. Using a prospective cohort design, we identified 62 OA (age ≥ 60 years) and 62 matched younger adults (YA) who completed surveys two weeks before, and one day, two weeks, four weeks, and six months after a guided psychedelic group session in a retreat setting. Mixed linear regression analyses revealed significant well-being improvements in OA and YA, amplified in OA with a history of a psychiatric diagnosis. Compared to YA, acute subjective psychedelic effects were attenuated in OA and did not significantly predict well-being changes. However, a psychosocial measure of Communitas emerged as a predictor in OA, suggesting that the relational components in psychedelic group settings may hold particular value for OA.

17.
bioRxiv ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38464275

RESUMO

N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by hippocampal and medial parietal deactivations and increased superior temporal lobe activity under DMT. Deactivations in the hippocampus and medial parietal cortex correlated with alterations in the usual sense of time, space and self-referential processes, reflecting a deconstruction of essential features of ordinary consciousness. Superior lobe activations instead correlated with audio/visual hallucinations and experience of "entities", reflecting the emergence of altered sensory experiences under DMT. Finally, increased heart rate under DMT correlated positively with hippocampus/medial parietal deactivation and the experience of "entities", and negatively with altered self-referential processes. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36754677

RESUMO

BACKGROUND: Treatment-resistant depression (TRD) refers to patients with major depressive disorder who do not remit after 2 or more antidepressant trials. TRD is common and highly debilitating, but its neurobiological basis remains poorly understood. Recent neuroimaging studies have revealed cortical connectivity gradients that dissociate primary sensorimotor areas from higher-order associative cortices. This fundamental topography determines cortical information flow and is affected by psychiatric disorders. We examined how TRD impacts gradient-based hierarchical cortical organization. METHODS: In this secondary study, we analyzed resting-state functional magnetic resonance imaging data from a mindfulness-based intervention enrolling 56 patients with TRD and 28 healthy control subjects. Using gradient extraction tools, baseline measures of cortical gradient dispersion within and between functional brain networks were derived, compared across groups, and associated with graph theoretical measures of network topology. In patients, correlation analyses were used to associate measures of cortical gradient dispersion with clinical measures of anxiety, depression, and mindfulness at baseline and following the intervention. RESULTS: Cortical gradient dispersion was reduced within major intrinsic brain networks in patients with TRD. Reduced cortical gradient dispersion correlated with increased network degree assessed through graph theory-based measures of network topology. Lower dispersion among default mode, control, and limbic network nodes related to baseline levels of trait anxiety, depression, and mindfulness. Patients' baseline limbic network dispersion predicted trait anxiety scores 24 weeks after the intervention. CONCLUSIONS: Our findings provide preliminary support for widespread alterations in cortical gradient architecture in TRD, implicating a significant role for transmodal and limbic networks in mediating depression, anxiety, and lower mindfulness in patients with TRD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Encéfalo , Córtex Cerebral , Antidepressivos/uso terapêutico
19.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106054

RESUMO

Cognitive and behavioral deficits in Alzheimer's disease (AD) and frontotemporal dementia (FTD) result from brain atrophy and altered functional connectivity. However, it is unclear how atrophy relates to functional connectivity disruptions across dementia subtypes and stages. We addressed this question using structural and functional MRI from 221 patients with AD (n=82), behavioral variant FTD (n=41), corticobasal syndrome (n=27), nonfluent (n=34) and semantic (n=37) variant primary progressive aphasia, and 100 cognitively normal individuals. Using partial least squares regression, we identified three principal structure-function components. The first component showed overall atrophy correlating with primary cortical hypo-connectivity and subcortical/association cortical hyper-connectivity. Components two and three linked focal syndrome-specific atrophy to peri-lesional hypo-connectivity and distal hyper-connectivity. Structural and functional component scores predicted global and domain-specific cognitive deficits. Anatomically, functional connectivity changes reflected alterations in specific brain activity gradients. Eigenmode analysis identified temporal phase and amplitude collapse as an explanation for atrophy-driven functional connectivity changes.

20.
medRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961381

RESUMO

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA